Back to Search Start Over

Incorporating Dipolar Solvents with Variable Density in Poisson-Boltzmann Electrostatics

Authors :
Cyril Azuara
Patrice Koehl
Michael Bon
Henri Orland
Marc Delarue
Dynamique Structurale des Macromolécules (DSM)
Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
Institut de Physique Théorique - UMR CNRS 3681 (IPHT)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
University of California [Davis] (UC Davis)
University of California
Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)
University of California (UC)
Source :
Biophysical Journal, Biophysical Journal, Biophysical Society, 2008, 95 (12), pp.5587-5605. ⟨10.1529/biophysj.108.131649⟩, Biophysical Journal, 2008, 95 (12), pp.5587-5605. ⟨10.1529/biophysj.108.131649⟩
Publication Year :
2008
Publisher :
HAL CCSD, 2008.

Abstract

We describe a new way to calculate the electrostatic properties of macromolecules that goes beyond the classical Poisson-Boltzmann treatment with only a small extra CPU cost. The solvent region is no longer modeled as a homogeneous dielectric media but rather as an assembly of self-orienting interacting dipoles of variable density. The method effectively unifies both the Poisson-centric view and the Langevin Dipole model. The model results in a variable dielectric constant \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}{\epsilon}({\vec{r}})\end{equation*}\end{document} in the solvent region and also in a variable solvent density \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}{\rho}({\vec{r}})\end{equation*}\end{document} that depends on the nature of the closest exposed solute atoms. The model was calibrated using small molecules and ions solvation data with only two adjustable parameters, namely the size and dipolar moment of the solvent. Hydrophobicity scales derived from the solvent density profiles agree very well with independently derived hydrophobicity scales, both at the atomic or residue level. Dimerization interfaces in homodimeric proteins or lipid-binding regions in membrane proteins clearly appear as poorly solvated patches on the solute accessible surface. Comparison of the thermally averaged solvent density of this model with the one derived from molecular dynamics simulations shows qualitative agreement on a coarse-grained level. Because this calculation is much more rapid than that from molecular dynamics, applications of a density-profile-based solvation energy to the identification of the true structure among a set of decoys become computationally feasible. Various possible improvements of the model are discussed, as well as extensions of the formalism to treat mixtures of dipolar solvents of different sizes.

Details

Language :
English
ISSN :
00063495 and 15420086
Database :
OpenAIRE
Journal :
Biophysical Journal, Biophysical Journal, Biophysical Society, 2008, 95 (12), pp.5587-5605. ⟨10.1529/biophysj.108.131649⟩, Biophysical Journal, 2008, 95 (12), pp.5587-5605. ⟨10.1529/biophysj.108.131649⟩
Accession number :
edsair.doi.dedup.....e012ba8a2ae4ac0a487a3a89c560d53d
Full Text :
https://doi.org/10.1529/biophysj.108.131649⟩