Back to Search Start Over

Dispersion, aberration and deconvolution in multi-wavelength fluorescence images

Authors :
Jason R. Swedlow
B. A. Scalettar
John W. Sedat
David A. Agard
Source :
Journal of Microscopy. 182:50-60
Publication Year :
1996
Publisher :
Wiley, 1996.

Abstract

The wavelength dependence of the incoherent point spread function in a wide-field microscope was investigated experimentally. Dispersion in the sample and optics can lead to significant changes in the point spread function as wavelength is varied over the range commonly used in fluorescence microscopy. For a given sample, optical conditions can generally be optimized to produce a point spread function largely free of spherical aberration at a given wavelength. Unfortunately, deviations in wavelength from this value will result in spherically aberrated point spread functions. Therefore, when multiple fluorophores are used to localize different components in the same sample, the image of the distribution of at least one of the fluorophores will be spherically aberrated. This aberration causes a loss of intensity and resolution, thereby complicating the localization and analysis of multiple components in a multi-wavelength image. We show that optimal resolution can be restored to a spherically aberrated image by constrained, iterative deconvolution, as long as the spherical aberration in the point spread function used for deconvolution matches the aberration in the image reasonably well. The success of this method is essentially independent of the initial degree of spherical aberration in the image. Deconvolution of many biological images can be achieved by collecting a small library of spherically aberrated and unaberrated point spread functions, and then choosing a point spread function appropriate for deconvolving each image. The co-localization and relative intensities of multiple components can then be accurately studied in a multi-wavelength image.

Details

ISSN :
00222720
Volume :
182
Database :
OpenAIRE
Journal :
Journal of Microscopy
Accession number :
edsair.doi.dedup.....e0315ee8972117e344fc3a8934d722df
Full Text :
https://doi.org/10.1046/j.1365-2818.1996.122402.x