Back to Search
Start Over
Individualised gonadotropin dose selection using markers of ovarian reserve for women undergoing in vitro fertilisation plus intracytoplasmic sperm injection (IVF/ICSI)
- Source :
- The Cochrane Library, Cochrane Database of Systematic Reviews, 2018(2). John Wiley and Sons Ltd, Wilkinson, J 2018, ' Individualised gonadotropin dose selection using markers of ovarian reserve for women undergoing in vitro fertilisation plus intracytoplasmic sperm injection ', Cochrane Database of Systematic Reviews, vol. 0, pp. 0 . https://doi.org/10.1002/14651858.CD012693.pub2
- Publication Year :
- 2018
- Publisher :
- Wiley, 2018.
-
Abstract
- BackgroundDuring a cycle of in vitro fertilisation plus intracytoplasmic sperm injection (IVF/ICSI), women receive daily doses of gonadotropin follicle‐stimulating hormone (FSH) to induce multifollicular development in the ovaries. Generally, the dose of FSH is associated with the number of eggs retrieved. A normal response to stimulation is often considered desirable, for example the retrieval of 5 to 15 oocytes. Both poor and hyper‐response are associated with increased chance of cycle cancellation. Hyper‐response is also associated with increased risk of ovarian hyperstimulation syndrome (OHSS). Clinicians often individualise the FSH dose using patient characteristics predictive of ovarian response such as age. More recently, clinicians have begun using ovarian reserve tests (ORTs) to predict ovarian response based on the measurement of various biomarkers, including basal FSH (bFSH), antral follicle count (AFC), and anti‐Müllerian hormone (AMH). It is unclear whether individualising FSH dose based on these markers improves clinical outcomes.ObjectivesTo assess the effects of individualised gonadotropin dose selection using markers of ovarian reserve in women undergoing IVF/ICSI.Search methodsWe searched the Cochrane Gynaecology and Fertility Group Specialised Register, Cochrane Central Register of Studies Online, MEDLINE, Embase, CINAHL, LILACS, DARE, ISI Web of Knowledge, ClinicalTrials.gov, and the World Health Organisation International Trials Registry Platform search portal from inception to 27th July 2017. We checked the reference lists of relevant reviews and included studies.Selection criteriaWe included trials that compared different doses of FSH in women with a defined ORT profile (i.e. predicted low, normal or high responders based on AMH, AFC, and/or bFSH) and trials that compared an individualised dosing strategy (based on at least one ORT measure) versus uniform dosing or a different individualised dosing algorithm.Data collection and analysisWe used standard methodological procedures recommended by Cochrane. Primary outcomes were live birth/ongoing pregnancy and severe OHSS. Secondary outcomes included clinical pregnancy, moderate or severe OHSS, multiple pregnancy, oocyte yield, cycle cancellations, and total dose and duration of FSH administration.Main resultsWe included 20 trials (N = 6088); however, we treated those trials with multiple comparisons as separate trials for the purpose of this review. Meta‐analysis was limited due to clinical heterogeneity. Evidence quality ranged from very low to moderate. The main limitations were imprecision and risk of bias associated with lack of blinding.Direct dose comparisons in women according to predicted responseAll evidence was low or very low quality.Due to differences in dose comparisons, caution is warranted in interpreting the findings of five small trials assessing predicted low responders. The effect estimates were very imprecise, and increased FSH dosing may or may not have an impact on rates of live birth/ongoing pregnancy, OHSS, and clinical pregnancy.Similarly, in predicted normal responders (nine studies, three comparisons), higher doses may or may not impact the probability of live birth/ongoing pregnancy (e.g. 200 versus 100 international units: OR 0.88, 95% CI 0.57 to 1.36; N = 522; 2 studies; I2 = 0%) or clinical pregnancy. Results were imprecise, and a small benefit or harm remains possible. There were too few events for the outcome of OHSS to enable any inferences.In predicted high responders, lower doses may or may not have an impact on rates of live birth/ongoing pregnancy (OR 0.98, 95% CI 0.66 to 1.46; N = 521; 1 study), OHSS, and clinical pregnancy. However, lower doses probably reduce the likelihood of moderate or severe OHSS (Peto OR 2.31, 95% CI 0.80 to 6.67; N = 521; 1 study).ORT‐algorithm studiesFour trials compared an ORT‐based algorithm to a non‐ORT control group. Rates of live birth/ongoing pregnancy and clinical pregnancy did not appear to differ by more than a few percentage points (respectively: OR 1.04, 95% CI 0.88 to 1.23; N = 2823, 4 studies; I2 = 34%; OR 0.96, 95% CI 0.82 to 1.13, 4 studies, I2=0%, moderate‐quality evidence). However, ORT algorithms probably reduce the likelihood of moderate or severe OHSS (Peto OR 0.58, 95% CI 0.34 to 1.00; N = 2823; 4 studies; I2 = 0%, low quality evidence). There was insufficient evidence to determine whether the groups differed in rates of severe OHSS (Peto OR 0.54, 95% CI 0.14 to 1.99; N = 1494; 3 studies; I2 = 0%, low quality evidence). Our findings suggest that if the chance of live birth with a standard dose is 26%, the chance with ORT‐based dosing would be between 24% and 30%. If the chance of moderate or severe OHSS with a standard dose is 2.5%, the chance with ORT‐based dosing would be between 0.8% and 2.5%. These results should be treated cautiously due to heterogeneity in the study designs.Authors' conclusionsWe did not find that tailoring the FSH dose in any particular ORT population (low, normal, high ORT), influenced rates of live birth/ongoing pregnancy but we could not rule out differences, due to sample size limitations. In predicted high responders, lower doses of FSH seemed to reduce the overall incidence of moderate and severe OHSS. Moderate‐quality evidence suggests that ORT‐based individualisation produces similar live birth/ongoing pregnancy rates to a policy of giving all women 150 IU. However, in all cases the confidence intervals are consistent with an increase or decrease in the rate of around five percentage points with ORT‐based dosing (e.g. from 25% to 20% or 30%). Although small, a difference of this magnitude could be important to many women. Further, ORT algorithms reduced the incidence of OHSS compared to standard dosing of 150 IU, probably by facilitating dose reductions in women with a predicted high response. However, the size of the effect is unclear. The included studies were heterogeneous in design, which limited the interpretation of pooled estimates, and many of the included studies had a serious risk of bias.Current evidence does not provide a clear justification for adjusting the standard dose of 150 IU in the case of poor or normal responders, especially as increased dose is generally associated with greater total FSH dose and therefore greater cost. However, a decreased dose in predicted high responders may reduce OHSS.
- Subjects :
- Medicine General & Introductory Medical Sciences
Anti-Mullerian Hormone
0301 basic medicine
medicine.medical_specialty
Pregnancy Rate
medicine.medical_treatment
Population
Oocyte Retrieval
Ovarian hyperstimulation syndrome
Fertilization in Vitro
Intracytoplasmic sperm injection
Ovarian Hyperstimulation Syndrome
03 medical and health sciences
0302 clinical medicine
Ovulation Induction
Pregnancy
medicine
Humans
Pharmacology (medical)
Sperm Injections, Intracytoplasmic
Ovarian Reserve
Ovarian reserve
education
Randomized Controlled Trials as Topic
education.field_of_study
030219 obstetrics & reproductive medicine
In vitro fertilisation
business.industry
Obstetrics
medicine.disease
Pregnancy rate
030104 developmental biology
Female
Follicle Stimulating Hormone, Human
Live birth
business
Live Birth
Biomarkers
Subjects
Details
- ISSN :
- 14651858 and 1469493X
- Volume :
- 2018
- Database :
- OpenAIRE
- Journal :
- Cochrane Database of Systematic Reviews
- Accession number :
- edsair.doi.dedup.....e0a6e3cde3c5ba954b4b7b283084bafc