Back to Search Start Over

Quantum tomography of an electron

Authors :
D. C. Glattli
T. Jullien
Antonella Cavanna
B. Roche
Yong Jin
Preden Roulleau
Service de physique de l'état condensé (SPEC - UMR3680)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Groupe Nano-Electronique (GNE)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Laboratoire de photonique et de nanostructures (LPN)
Centre National de la Recherche Scientifique (CNRS)
European Project: 228273,EC:FP7:ERC,ERC-2008-AdG,MEQUANO(2009)
Source :
Nature, Nature, Nature Publishing Group, 2014, 514, pp.603-607. ⟨10.1038/nature13821⟩, Nature, 2014, 514, pp.603-607. ⟨10.1038/nature13821⟩
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

International audience; The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods which have been applied to atomic, molecular, spin and photonic states. For optical or microwave photons, standard tomogra-phy is obtained by mixing the unknown state with a large-amplitude coherent photon field. However, for fermions such as electrons in condensed matter, this approach is not applicable because fermionic fields are limited to small amplitudes (at most one particle per state), and so far no determination of an electron wavefunction has been made. Recent proposals involving quantum conductors suggest that the wavefunction can be obtained by measuring the time-dependent current of electronic wave interferometers or the current noise of electronic Hanbury-Brown/Twiss interferometers. Here we show that such measurements are possible despite the extreme noise sensitivity required, and present the reconstructed wavefunction quasi-probability, or Wigner distribution function, of single electrons injected into a ballistic conductor. Many identical electrons are prepared in well-controlled quantum states called levitons by repeatedly applying Lorentzian voltage pulses to a contact on the conductor. After passing through an electron beam splitter, the levitons are mixed with a weak-amplitude fermionic field formed by a coherent superposition of electron–hole pairs generated by a small alternating current with a frequency that is a multiple of the voltage pulse frequency 16. Antibunching of the electrons and holes with the levi-tons at the beam splitter changes the leviton partition statistics, and the noise variations provide the energy density matrix elements of the levitons. This demonstration of quantum tomography makes the developing field of electron quantum optics with ballistic conductors a new test-bed for quantum information with fermions. These results may find direct application in probing the entanglement of electron flying quantum bits, electron decoherence and electron interactions. They could also be applied to cold fermionic (or spin-1/2) atoms.

Details

Language :
English
ISSN :
00280836, 14764679, and 14764687
Database :
OpenAIRE
Journal :
Nature, Nature, Nature Publishing Group, 2014, 514, pp.603-607. ⟨10.1038/nature13821⟩, Nature, 2014, 514, pp.603-607. ⟨10.1038/nature13821⟩
Accession number :
edsair.doi.dedup.....e1537a8fd196c77337f8d2ef08b06710
Full Text :
https://doi.org/10.1038/nature13821⟩