Cite
Use of Non-invasive Parameters and Machine-Learning Algorithms for Predicting Future Risk of Type 2 Diabetes: A Retrospective Cohort Study of Health Data From Kuwait
MLA
Bassam Farran, et al. “Use of Non-Invasive Parameters and Machine-Learning Algorithms for Predicting Future Risk of Type 2 Diabetes: A Retrospective Cohort Study of Health Data From Kuwait.” Frontiers in Endocrinology, vol. 10, Nov. 2018. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi.dedup.....e1efce95c6b355954ea52d921b1d05e9&authtype=sso&custid=ns315887.
APA
Bassam Farran, Rihab AlWotayan, Hessa Alkandari, Dalia Al-Abdulrazzaq, Arshad Channanath, & Thangavel Alphonse Thanaraj. (2018). Use of Non-invasive Parameters and Machine-Learning Algorithms for Predicting Future Risk of Type 2 Diabetes: A Retrospective Cohort Study of Health Data From Kuwait. Frontiers in Endocrinology, 10.
Chicago
Bassam Farran, Rihab AlWotayan, Hessa Alkandari, Dalia Al-Abdulrazzaq, Arshad Channanath, and Thangavel Alphonse Thanaraj. 2018. “Use of Non-Invasive Parameters and Machine-Learning Algorithms for Predicting Future Risk of Type 2 Diabetes: A Retrospective Cohort Study of Health Data From Kuwait.” Frontiers in Endocrinology 10 (November). http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi.dedup.....e1efce95c6b355954ea52d921b1d05e9&authtype=sso&custid=ns315887.