Back to Search Start Over

Multi-PLI: interpretable multi‐task deep learning model for unifying protein–ligand interaction datasets

Authors :
Muchun Zhu
Peng Yin
Dongqi Wang
Fan Hu
Jiaxin Jiang
Source :
Journal of Cheminformatics, Vol 13, Iss 1, Pp 1-14 (2021), Journal of Cheminformatics
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

The assessment of protein–ligand interactions is critical at early stage of drug discovery. Computational approaches for efficiently predicting such interactions facilitate drug development. Recently, methods based on deep learning, including structure- and sequence-based models, have achieved impressive performance on several different datasets. However, their application still suffers from a generalizability issue because of insufficient data, especially for structure based models, as well as a heterogeneity problem because of different label measurements and varying proteins across datasets. Here, we present an interpretable multi-task model to evaluate protein–ligand interaction (Multi-PLI). The model can run classification (binding or not) and regression (binding affinity) tasks concurrently by unifying different datasets. The model outperforms traditional docking and machine learning on both binary classification and regression tasks and achieves competitive results compared with some structure-based deep learning methods, even with the same training set size. Furthermore, combined with the proposed occlusion algorithm, the model can predict the important amino acids of proteins that are crucial for binding, thus providing a biological interpretation. Supplementary Information The online version contains supplementary material available at 10.1186/s13321-021-00510-6.

Details

Language :
English
ISSN :
17582946
Volume :
13
Issue :
1
Database :
OpenAIRE
Journal :
Journal of Cheminformatics
Accession number :
edsair.doi.dedup.....e21a92396967854857d5c40159edba87