Back to Search Start Over

High Accuracy Terrain Reconstruction from Point Clouds Using Implicit Deformable Model

Authors :
Takashi Kanai
Jules Morel
Alexandra Bac
The University of Tokyo (UTokyo)
Laboratoire des Sciences de l'Information et des Systèmes (LSIS)
Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Université de Toulon (UTLN)-Aix Marseille Université (AMU)
Bac, Alexandra
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS)
Source :
Computational Science – ICCS 2020, ICCS, ICCS, Jun 2020, Amsterdam, Netherlands, Lecture Notes in Computer Science ISBN: 9783030504328, ICCS (6)
Publication Year :
2020

Abstract

Few previous works have studied the modeling of forest ground surfaces from LiDAR point clouds using implicit functions. [10] is a pioneer in this area. However, by design this approach proposes over-smoothed surfaces, in particular in highly occluded areas, limiting its ability to reconstruct fine-grained terrain surfaces. This paper presents a method designed to finely approximate ground surfaces by relying on deep learning to separate vegetation from potential ground points, filling holes by blending multiple local approximations through the partition of unity principle, then improving the accuracy of the reconstructed surfaces by pushing the surface towards the data points through an iterative convection model.

Details

Language :
English
ISBN :
978-3-030-50432-8
ISBNs :
9783030504328
Volume :
12142
Database :
OpenAIRE
Journal :
Computational Science – ICCS 2020
Accession number :
edsair.doi.dedup.....e261fa307e87b9ca71a5a99ff4636de8