Back to Search
Start Over
Interaction with Soil Bacteria Affects the Growth and Amino Acid Content of Piriformospora indica
- Source :
- Molecules, Vol. 25, No. 3 (2020), Volume 25, Issue 3, Repositorio Digital USB, Universidad Simón Bolívar, instacron:Universidad Simón Bolívar, Molecules, Vol 25, Iss 3, p 572 (2020)
- Publication Year :
- 2020
- Publisher :
- MDPI, 2020.
-
Abstract
- Exploration of the effect of soil bacteria on growth and metabolism of beneficial root endophytic fungi is relevant to promote favorable associations between microorganisms of the plant rhizosphere. Hence, the interaction between the plant-growth-promoting fungus Piriformospora indica and different soil bacteria was investigated. The parameters studied were fungal growth and its amino acid composition during the interaction. Fungus and bacteria were confronted in dual cultures in Petri dishes, either through agar or separated by a Perspex wall that only allowed the bacterial volatiles to be effective. Fungal growth was stimulated by Azotobacter chroococcum, whereas Streptomyces anulatus AcH 1003 inhibited it and Streptomyces sp. Nov AcH 505 had no effect. To analyze amino acid concentration data, targeted metabolomics was implemented under supervised analysis according to fungal-bacteria interaction and time. Orthogonal partial least squares-discriminant analysis (OPLS-DA) model clearly discriminated P. indica&ndash<br />A. chroococcum and P. indica&ndash<br />S. anulatus interactions, according to the respective score plot in comparison to the control. The most observable responses were in the glutamine and alanine size groups: While Streptomyces AcH 1003 increased the amount of glutamine, A. chroococcum decreased it. The fungal growth and the increase of alanine content might be associated with the assimilation of nitrogen in the presence of glucose as a carbon source. The N-fixing bacterium A. chroococcum should stimulate fungal amino acid metabolism via glutamine synthetase-glutamate synthase (GS-GOGAT). The data pointed to a stimulated glycolytic activity in the fungus observed by the accumulation of alanine, possibly via alanine aminotransferase. The responses toward the growth-inhibiting Streptomyces AcH 1003 suggest an (oxidative) stress response of the fungus.
- Subjects :
- Piriformospora indica
Endophytic fungi
Pharmaceutical Science
medicine.disease_cause
Streptomyces
Article
Analytical Chemistry
lcsh:QD241-441
03 medical and health sciences
lcsh:Organic chemistry
Drug Discovery
medicine
Metabolomics
Amino acid content
Physical and Theoretical Chemistry
Amino Acids
Soil Microbiology
030304 developmental biology
Alanine
0303 health sciences
Rhizosphere
endophytic fungi
biology
030306 microbiology
Chemistry
Basidiomycota
fungi
Organic Chemistry
mycorrhiza helper bacteria
biology.organism_classification
Glutamine
Oxidative Stress
Biochemistry
Chemistry (miscellaneous)
amino acid content
Azotobacter
Molecular Medicine
Azotobacter chroococcum
Piriformospora
Supervised Machine Learning
Mycorrhiza helper bacteria
Glycolysis
Streptomyces anulatus
Bacteria
Subjects
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 25
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Molecules
- Accession number :
- edsair.doi.dedup.....e28288a78e355a9a7d757ffac5119462
- Full Text :
- https://doi.org/10.3390/molecules25030572