Back to Search Start Over

Towards Ontology Reasoning for Topological Cluster Labeling

Authors :
Isabelle Mougenot
Laure Berti-Equille
Younès Bennani
Hatim Chahdi
Nistor Grozavu
Laboratoire d'Informatique de Paris-Nord (LIPN)
Université Sorbonne Paris Cité (USPC)-Institut Galilée-Université Paris 13 (UP13)-Centre National de la Recherche Scientifique (CNRS)
UMR 228 Espace-Dev, Espace pour le développement
Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Université de Guyane (UG)-Université des Antilles (UA)
Qatar Computing Research Institute [Doha, Qatar] (QCRI)
ANR-12-MONU-0001,Coclico,COllaboration, CLassification, Incrémentalité et COnnaissances(2012)
Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS)
Université de Guyane (UG)-Université des Antilles (UA)-Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)
Source :
Lecture Notes in Computer Science, Springer, International Conference on Neural Information Processing, International Conference on Neural Information Processing, Oct 2016, Kyoto, Japan. pp.156-164, ⟨10.1007/978-3-319-46675-0_18⟩, Neural Information Processing ISBN: 9783319466743, ICONIP (3)
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; In this paper, we present a new approach combining topological un-supervised learning with ontology based reasoning to achieve both : (i) automatic interpretation of clustering, and (ii) scaling ontology reasoning over large datasets. The interest of such approach holds on the use of expert knowledge to automate cluster labeling and gives them high level semantics that meets the user interest. The proposed approach is based on two steps. The first step performs a topographic unsupervised learning based on the SOM (Self-Organizing Maps) algorithm. The second step integrates expert knowledge in the map using ontol-ogy reasoning over the prototypes and provides an automatic interpretation of the clusters. We apply our approach to the real problem of satellite image classification. The experiments highlight the capacity of our approach to obtain a semantically labeled topographic map and the obtained results show very promising performances.

Details

Language :
English
ISBN :
978-3-319-46674-3
ISBNs :
9783319466743
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science, Springer, International Conference on Neural Information Processing, International Conference on Neural Information Processing, Oct 2016, Kyoto, Japan. pp.156-164, ⟨10.1007/978-3-319-46675-0_18⟩, Neural Information Processing ISBN: 9783319466743, ICONIP (3)
Accession number :
edsair.doi.dedup.....e2905fc69b59140ae5bbbef60f81de38
Full Text :
https://doi.org/10.1007/978-3-319-46675-0_18⟩