Back to Search Start Over

Integrated Analysis of Methylome and Transcriptome Following Developmental Atrazine Exposure in Zebrafish Reveals Aberrant Gene-Specific Methylation of Neuroendocrine and Reproductive Pathways

Authors :
Jun Xie
Min Zhang
Jennifer L. Freeman
Chris Bryan
Horzmann Ka
Ahkin Chin Tai J
Chongli Yuan
Wettschurack K
Li F Lin
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

Atrazine (ATZ) is one of the most commonly used herbicides in the United States. Previous studies have hypothesized the role of ATZ as an endocrine disruptor (EDC), and developmental exposure to ATZ has been shown to lead to behavioral and morphological alterations. Specific epigenetic mechanisms responsible for these alterations, however, are yet to be elucidated. In this study, we exposed zebrafish embryos to 0.3, 3, and 30 ppb (µg/L) of ATZ for 72 hours post fertilization. We performed whole-genome bisulfite sequencing (WGBS) to assess the effects of developmental ATZ exposure on DNA methylation in female fish brains. The number of differentially methylated genes (DMG) increase with increasing dose of treatments. DMGs are enriched in neurological pathways with extensive methylation changes consistently observed in neuroendocrine and reproductive pathways. To assess the effects of DNA methylation on gene expression, we integrated our data with transcriptomic data. Four genes, namely CHD9, FRAS1, PID1, and PCLO, were differentially expressed and methylated in each dose. Overall, this study identifies specific genes and pathways with aberrant methylation and expression following ATZ exposure as targets to elucidate the molecular mechanisms of ATZ toxicity and presents ATZ-induced site-specific DNA methylation as a potential mechanism driving aberrant gene expression.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....e35ef6c60839ae88002a027b0c9e3de1
Full Text :
https://doi.org/10.1101/2020.01.28.922179