Back to Search Start Over

Insensitizing controls for the heat equation with respect to boundary variations

Authors :
Sylvain Ervedoza
Pierre Lissy
yannick privat
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
TOkamaks and NUmerical Simulations (TONUS)
Institut de Recherche Mathématique Avancée (IRMA)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
The first author has been supported by the Agence Nationale de la Recherche, Project IFSMACS, grant ANR-15-CE40-0010, and by the CIMI Labex, Toulouse, France, under grant ANR-11-LABX-0040-CIMI. The three authors are supported by the Agence Nationale de la Recherche, Project TRECOS. the third authors has been partially supported by the ANR Project 'SHAPe Optimization - SHAPO' and by the Project ``Analysis and simulation of optimal shapes - application to lifesciences' of the Paris City Hall.
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Inria Nancy - Grand Est
Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
Source :
Journal de l'École polytechnique — Mathématiques, Journal de l'École polytechnique — Mathématiques, 2022, Tome 9, pp.1397--1429, HAL
Publication Year :
2020

Abstract

International audience; This article is dedicated to insensitization issues of a quadratic functional involving the solution of the linear heat equation with respect to domains variations. This work can be seen as a continuation of [P. Lissy, Y. Privat, and Y. Simpor\'e. Insensitizing control for linear and semi-linear heat equations with partially unknown domain. ESAIM Control Optim. Calc. Var., 25:Art. 50, 21, 2019], insofar as we generalize several of the results it contains and investigate new related properties. In our framework, we consider boundary variations of the spatial domain on which the solution of the PDE is defined at each time, and investigate three main issues: (i) approximate insensitization, (ii) approximate insensitization combined with an exact insensitization for a finite-dimensional subspace, and (iii) exact insensitization. We provide positive answers to questions (i) and (ii) and partial results to question (iii).

Details

Language :
English
ISSN :
24297100 and 2270518X
Database :
OpenAIRE
Journal :
Journal de l'École polytechnique — Mathématiques, Journal de l'École polytechnique — Mathématiques, 2022, Tome 9, pp.1397--1429, HAL
Accession number :
edsair.doi.dedup.....e378c675fae6f06c22e05b3549c7f373