Back to Search Start Over

Homological Quantum Rotor Codes: Logical Qubits from Torsion

Authors :
Vuillot, Christophe
Ciani, Alessandro
Terhal, Barbara M.
Designing the Future of Computational Models (MOCQUA)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Forschungszentrum Jülich GmbH
Delft University of Technology (TU Delft)
Faculty of Electrical Engineering, Mathematics and Computer Science [Delft] (EEMCS)
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC2004/1 – 390534769
German Federal Ministry of Education and Research in the funding program 'quantum technologies – from basic research to market' (contract number 13N15585)
QuTech NWO funding 2020-2024 – Part I 'Fundamental Research', project number 601.QT.001-1, financed by the Dutch Research Council (NWO)
ANR-22-PETQ-0006,NISQ2LSQ,From NISQ to LSQ: Bosonic and LDPC codes(2022)
Publication Year :
2023

Abstract

We formally define homological quantum rotor codes which use multiple quantum rotors to encode logical information. These codes generalize homological or CSS quantum codes for qubits or qudits, as well as linear oscillator codes which encode logical oscillators. Unlike for qubits or oscillators, homological quantum rotor codes allow one to encode both logical rotors and logical qudits, depending on the homology of the underlying chain complex. In particular, such a code based on the chain complex obtained from tessellating the real projective plane or a M\"{o}bius strip encodes a qubit. We discuss the distance scaling for such codes which can be more subtle than in the qubit case due to the concept of logical operator spreading by continuous stabilizer phase-shifts. We give constructions of homological quantum rotor codes based on 2D and 3D manifolds as well as products of chain complexes. Superconducting devices being composed of islands with integer Cooper pair charges could form a natural hardware platform for realizing these codes: we show that the $0$-$\pi$-qubit as well as Kitaev's current-mirror qubit -- also known as the M\"{o}bius strip qubit -- are indeed small examples of such codes and discuss possible extensions.<br />Comment: 47 pages, 10 figures, 2 tables

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....e397cc24e8c2b9e53b66c706aab84d82