Back to Search Start Over

Preliminary study of laser doppler perfusion signal by wavelet transform in patients with critical limb ischemia before and after revascularization

Authors :
Romeo Martini
Valentina Ticcinelli
Andrea Bagno
Source :
Clinical Hemorheology and Microcirculation. 58:415-428
Publication Year :
2014
Publisher :
IOS Press, 2014.

Abstract

The haemodynamics of skin microcirculation can be quantitatively evaluated by Laser Doppler Fluxmetry (LDF). LDF signal in human skin shows periodic oscillations. Spectral analysis by wavelet transform displays six characteristic frequency intervals (FI) from 0.005 to 2 Hz, related to distinct vascular structures activities: heart (0.6-2 Hz), sympathetic respiratory (0.145-0.6 Hz), myogenic (0.052-0.145 Hz), local sympathetic nerve (0.021-0.052 Hz) and endothelial cells NO dependent (0.0095-0.021 Hz) and NO independent (0.005-0.0095 Hz). The most advanced stage of peripheral arterial obstructive disease is the critical limb ischemia (CLI), which causes the reduction of blood perfusion threatening limb viability. Besides macrocirculatory alterations, many studies have shown microvascular misdistribution of skin blood flow as the main factor that leads patients to CLI. Revascularization can save limb and patient's life, too. In the present study, LDF signals have been recorded on the skin of the foot dorsum in 15 patients suffering from CLI. LDF signals have been analyzed before and after limb revascularization by means of the wavelet analysis. Significant changes in frequency distribution before and after limb revascularization have been detected: the median normalized values of spectral power increases for 49.8% (p = 0.0341) in the frequency range 0.050328-0.053707 Hz, whereas spectral power decreases for 77.1% (p = 0.0179) in the frequency range 0.018988-0.029284 Hz. We can conclude that changes in the frequency intervals occur after revascularization, shifting from a prevailing endothelial activity toward a prevailing sympathetic activity.

Details

ISSN :
13860291
Volume :
58
Database :
OpenAIRE
Journal :
Clinical Hemorheology and Microcirculation
Accession number :
edsair.doi.dedup.....e40e671a6821afabb61677cdecbce66f