Back to Search Start Over

Protective Effect of Chrysanthemum morifolium cv. Fubaiju Hot-Water Extracts Against ARPE-19 Cell Oxidative Damage by Activating PI3K/Akt-Mediated Nrf2/HO-1 Signaling Pathway

Authors :
Yaqiong Zhang
Yanfang Li
Ziyuan Wang
Yiming Hao
Boyan Gao
Jing Wang
Jie Liu
Source :
Frontiers in Nutrition, Vol 8 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

Chrysanthemum morifolium cv. Fubaiju is a kind of widely consumed herb tea with multiple health benefits. The present study was aimed to evaluate the protective capacity of C. morifolium cv. Fubaiju hot-water extracts (CMs) against ARPE-19 cell oxidative damage. The results showed that pretreatment with 100 μg/mL CM could significantly reduce cell oxidative damage and apoptosis. Proapoptotic protein expression such as Bax, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP) was significantly decreased after CM addition, while the expression level of antioxidant enzymes including catalase, glutamate-cysteine ligase catalytic subunit (GCLc), superoxide dismutase 2 (SOD2), and NAD(P)H:quinone oxidoreductase 1 (NQO-1) was significantly promoted. Meanwhile, CM treatment upregulated Akt phosphorylation, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, and the expression level of antioxidant gene heme oxygenase-1 (HO-1) in a dose-dependent manner under oxidative stress. Knockdown of Nrf2 by targeted small interfering RNA (siRNA) alleviated CM-mediated HO-1 transcription and almost abolished CM-mediated protection against hydrogen peroxide (H2O2)-induced cell damage. Correspondingly, the protective effect of CM was dramatically blocked after interference with phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor LY294002, indicating that the protective effect of CM on cell oxidative damage was attributed to PI3K/Akt-mediated Nrf2/HO-1 signaling pathway.

Details

Language :
English
Volume :
8
Database :
OpenAIRE
Journal :
Frontiers in Nutrition
Accession number :
edsair.doi.dedup.....e438097f6deecf2e14ef7e32d73ca318
Full Text :
https://doi.org/10.3389/fnut.2021.648973/full