Back to Search
Start Over
Long monochromatic paths and cycles in 2-edge-colored multipartite graphs
- Source :
- Mosc. J. Comb. Number Theory 9, no. 1 (2020), 55-100
- Publication Year :
- 2020
- Publisher :
- MSP, 2020.
-
Abstract
- We solve four similar problems: For every fixed $s$ and large $n$, we describe all values of $n_1,\ldots,n_s$ such that for every $2$-edge-coloring of the complete $s$-partite graph $K_{n_1,\ldots,n_s}$ there exists a monochromatic (i) cycle $C_{2n}$ with $2n$ vertices, (ii) cycle $C_{\geq 2n}$ with at least $2n$ vertices, (iii) path $P_{2n}$ with $2n$ vertices, and (iv) path $P_{2n+1}$ with $2n+1$ vertices. This implies a generalization for large $n$ of the conjecture by Gy\'arf\'as, Ruszink\'o, S\'ark\H{o}zy and Szemer\'edi that for every $2$-edge-coloring of the complete $3$-partite graph $K_{n,n,n}$ there is a monochromatic path $P_{2n+1}$. An important tool is our recent stability theorem on monochromatic connected matchings.<br />Comment: 46 pages, 4 figures
- Subjects :
- 05C15, 05C35, 05C38
Generalization
Ramsey number
MathematicsofComputing_GENERAL
0102 computer and information sciences
Edge (geometry)
01 natural sciences
Combinatorics
Regularity Lemma
FOS: Mathematics
Discrete Mathematics and Combinatorics
Mathematics - Combinatorics
paths and cycles
0101 mathematics
Mathematics
Algebra and Number Theory
Conjecture
010102 general mathematics
Multipartite
05C38
05C15
Colored
010201 computation theory & mathematics
Path (graph theory)
Combinatorics (math.CO)
Monochromatic color
Ramsey's theorem
05C35
MathematicsofComputing_DISCRETEMATHEMATICS
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Mosc. J. Comb. Number Theory 9, no. 1 (2020), 55-100
- Accession number :
- edsair.doi.dedup.....e4403a78e5efaba57971a4afbbaf147b