Back to Search Start Over

Dynamic model adaptation for multiscale simulation of hyperbolic systems with relaxation

Authors :
Nicolas Seguin
Hélène Mathis
Clément Cancès
Edwige Godlewski
Laboratoire de Mathématiques Jean Leray (LMJL)
Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)
Reliable numerical approximations of dissipative systems (RAPSODI )
Laboratoire Paul Painlevé - UMR 8524 (LPP)
Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Numerical Analysis, Geophysics and Ecology (ANGE)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt
LRC Manon (Modélisation et approximation numérique orientées pour l'énergie nucléaire - CEA/DM2S-LJLL).
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Paul Painlevé (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe
ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011)
Source :
Journal of Scientific Computing, Journal of Scientific Computing, Springer Verlag, 2015, 63 (3), pp.820-861. ⟨10.1007/s10915-014-9915-0⟩, Journal of Scientific Computing, 2015, 63 (3), pp.820-861. ⟨10.1007/s10915-014-9915-0⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; In numerous industrial CFD applications, it is usual to use two (or more)different codes to solve a physical phenomenon: where the flow is a priori assumed to have a simple behavior, a code based on a coarse model is applied, while a code based on a fine model is used elsewhere. This leads to a complex coupling problem with fixed interfaces. The aim of the present work is to provide a numerical indicator to optimize to position of these coupling interfaces. In other words, thanks to this numerical indicator, one could verify if the use of the coarser model and of the resulting coupling does not introduce spurious effects. In order to validate this indicator, we use it in a dynamical multiscale method with moving coupling interfaces. The principle of this method is to use as much as possible a coarse model instead of the fine model in the computational domain, in order to obtain an accuracy which is comparable with the one provided by the fine model. We focus here on general hyperbolic systems with stiff relaxation source terms together with the corresponding hyperbolic equilibrium systems. Using a numerical Chapman-Enskog expansion and the distance to the equilibrium manifold, we construct the numerical indicator. Based on several works on the coupling of different hyperbolic models, an original numerical method of dynamic model adaptation is proposed. We prove that this multiscale method preserves invariant domains and that the entropy of the numerical solution decreases with respect to time. The reliability of the adaptation procedure is assessed on various 1D and 2D test cases coming from two-phase flow modeling.

Details

Language :
English
ISSN :
08857474 and 15737691
Database :
OpenAIRE
Journal :
Journal of Scientific Computing, Journal of Scientific Computing, Springer Verlag, 2015, 63 (3), pp.820-861. ⟨10.1007/s10915-014-9915-0⟩, Journal of Scientific Computing, 2015, 63 (3), pp.820-861. ⟨10.1007/s10915-014-9915-0⟩
Accession number :
edsair.doi.dedup.....e4a7a60444c9efac2ff34911343c7ddb
Full Text :
https://doi.org/10.1007/s10915-014-9915-0⟩