Back to Search Start Over

Numerical Simulation of Back Discharge Ignition

Authors :
Jean-Hugues Paillol
Florent Lemont
Jaroslav Jánský
Delphine Bessières
Nicolas Soulem
Sylvain Gaychet
Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C)
CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
Laboratoire des Sciences de l'Ingénieur Appliquées à la Mécanique et au génie Electrique (SIAME)
Université de Pau et des Pays de l'Adour (UPPA)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Source :
Journal of Physics D: Applied Physics, Journal of Physics D: Applied Physics, 2014, 47 (6), pp.065202. ⟨10.1088/0022-3727/47/6/065202⟩, Journal of Physics D: Applied Physics, IOP Publishing, 2014, 47 (6), pp.065202. ⟨10.1088/0022-3727/47/6/065202⟩
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

Back discharge refers to any discharges initiated at or near a dielectric layer covering a passive electrode (Czech et al 2011 Eur. Phys. J. D 65 459–74). Back discharge activity is commonly observed in electrostatic precipitators. This study aims to contribute to increasing the fundamental understanding of back discharge phenomena by using a plasma fluid model. The modelling strategy only considers the region of back discharge development as a first approach, and the numerical simulation is complemented by an experimental study. Back discharge ignition is studied with a pinhole of radius 100 µm set in a dielectric layer. First, we have considered the criterion for back discharge ignition from an electrostatic point of view, and the numerical results confirm the major role of the surface charge density deposited on the dielectric layer. Then the dynamics of back discharge in the 'onset-streamer' regime (Masuda and Mizuno 1977/1978 J. Electrostat. 2 375–96) is described: the discharge ignites inside the pinhole, develops outside as a cathode-directed ionizing wave, before stopping. This regime is characterized by a current pulse and the corresponding optical emission. Results obtained in experiments and simulations are in good agreement. Furthermore, this discharge regime is independent of the pinhole radius (ranging from 75 to 150 µm) despite a change in the discharge shape. Finally, an increase in the initial negative ion density or Laplacian electric field is found to be responsible for the transition from 'onset-streamer' to 'space streamer' regime, which corresponds well with experimental observations.

Details

Language :
English
ISSN :
00223727 and 13616463
Database :
OpenAIRE
Journal :
Journal of Physics D: Applied Physics, Journal of Physics D: Applied Physics, 2014, 47 (6), pp.065202. ⟨10.1088/0022-3727/47/6/065202⟩, Journal of Physics D: Applied Physics, IOP Publishing, 2014, 47 (6), pp.065202. ⟨10.1088/0022-3727/47/6/065202⟩
Accession number :
edsair.doi.dedup.....e4b23f91dd500f6bb2acfefd87ff8f40
Full Text :
https://doi.org/10.1088/0022-3727/47/6/065202⟩