Back to Search
Start Over
Zeros of the Potts model partition function on Sierpinski graphs
- Source :
- Physics Letters A. 377:671-675
- Publication Year :
- 2013
- Publisher :
- Elsevier BV, 2013.
-
Abstract
- We calculate zeros of the $q$-state Potts model partition function on $m$'th-iterate Sierpinski graphs, $S_m$, in the variable $q$ and in a temperature-like variable, $y$. We infer some asymptotic properties of the loci of zeros in the limit $m \to \infty$ and relate these to thermodynamic properties of the $q$-state Potts ferromagnet and antiferromagnet on the Sierpinski gasket fractal, $S_\infty$.<br />Comment: 6 pages, 8 figures
- Subjects :
- Physics
Partition function (quantum field theory)
Statistical Mechanics (cond-mat.stat-mech)
FOS: Physical sciences
General Physics and Astronomy
Chiral Potts curve
Sierpinski triangle
Combinatorics
Fractal
Condensed Matter::Statistical Mechanics
Limit (mathematics)
Condensed Matter - Statistical Mechanics
Potts model
Variable (mathematics)
Subjects
Details
- ISSN :
- 03759601
- Volume :
- 377
- Database :
- OpenAIRE
- Journal :
- Physics Letters A
- Accession number :
- edsair.doi.dedup.....e4cf164a5fa354f4ea0524645d644027
- Full Text :
- https://doi.org/10.1016/j.physleta.2013.01.017