Back to Search Start Over

How many weights can a quasi-cyclic code have ?

Authors :
Patrick Solé
Minjia Shi
Alessandro Neri
Anhui University [Hefei]
Digital Signal Processing Multimedia & Optical Communications Laboratory [Rome] (COMLAB)
Università degli Studi Roma Tre
Institut de Mathématiques de Marseille (I2M)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Università degli Studi Roma Tre = Roma Tre University (ROMA TRE)
Source :
IEEE Transactions on Information Theory, IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2020, ⟨10.1109/TIT.2020.3001591⟩, IEEE Transactions on Information Theory, 2020, ⟨10.1109/TIT.2020.3001591⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

We investigate the largest number of nonzero weights of quasi-cyclic codes. In particular, we focus on the function $\Gamma _{Q}(n,\ell,k,q)$ , that is defined to be the largest number of nonzero weights a quasi-cyclic code of index $\gcd (\ell,n)$ , length $n$ and dimension $k$ over $\mathbb F_{q}$ can have, and connect it to similar functions related to linear and cyclic codes. We provide several upper and lower bounds on this function, using different techniques and studying its asymptotic behavior. Moreover, we determine the smallest index for which a $q$ -ary Reed-Muller code is quasi-cyclic, a result of independent interest.

Details

Language :
English
ISSN :
00189448
Database :
OpenAIRE
Journal :
IEEE Transactions on Information Theory, IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2020, ⟨10.1109/TIT.2020.3001591⟩, IEEE Transactions on Information Theory, 2020, ⟨10.1109/TIT.2020.3001591⟩
Accession number :
edsair.doi.dedup.....e505499df9e6e9e54b28b8c0c7419ce2
Full Text :
https://doi.org/10.1109/TIT.2020.3001591⟩