Back to Search Start Over

An Image Retrieval System for Video

An Image Retrieval System for Video

Authors :
Claudio Gennaro
Claudio Vairo
Fabrizio Falchi
Fabio Carrara
Lucia Vadicamo
Franca Debole
Paolo Bolettieri
Source :
International Conference on Similarity Search and Applications (SISAP), pp. 332–339, Newark, NJ, USA, 2-4/10/2019, info:cnr-pdr/source/autori:Bolettieri P.; Carrara F.; Debole F.; Falchi F.; Gennaro C.; Vadicamo L.; Vairo C./congresso_nome:International Conference on Similarity Search and Applications (SISAP)/congresso_luogo:Newark, NJ, USA/congresso_data:2-4%2F10%2F2019/anno:2019/pagina_da:332/pagina_a:339/intervallo_pagine:332–339, Similarity Search and Applications ISBN: 9783030320461, SISAP
Publication Year :
2019

Abstract

Since the 1970’s the Content-Based Image Indexing and Retrieval (CBIR) has been an active area. Nowadays, the rapid increase of video data has paved the way to the advancement of the technologies in many different communities for the creation of Content-Based Video Indexing and Retrieval (CBVIR). However, greater attention needs to be devoted to the development of effective tools for video search and browse. In this paper, we present Visione, a system for large-scale video retrieval. The system integrates several content-based analysis and retrieval modules, including a keywords search, a spatial object-based search, and a visual similarity search. From the tests carried out by users when they needed to find as many correct examples as possible, the similarity search proved to be the most promising option. Our implementation is based on state-of-the-art deep learning approaches for content analysis and leverages highly efficient indexing techniques to ensure scalability. Specifically, we encode all the visual and textual descriptors extracted from the videos into (surrogate) textual representations that are then efficiently indexed and searched using an off-the-shelf text search engine using similarity functions.

Details

Language :
English
ISBN :
978-3-030-32046-1
ISBNs :
9783030320461
Database :
OpenAIRE
Journal :
International Conference on Similarity Search and Applications (SISAP), pp. 332–339, Newark, NJ, USA, 2-4/10/2019, info:cnr-pdr/source/autori:Bolettieri P.; Carrara F.; Debole F.; Falchi F.; Gennaro C.; Vadicamo L.; Vairo C./congresso_nome:International Conference on Similarity Search and Applications (SISAP)/congresso_luogo:Newark, NJ, USA/congresso_data:2-4%2F10%2F2019/anno:2019/pagina_da:332/pagina_a:339/intervallo_pagine:332–339, Similarity Search and Applications ISBN: 9783030320461, SISAP
Accession number :
edsair.doi.dedup.....e54dde19bbb9d6daca735828a4c94941