Back to Search Start Over

On neighborhood tree search

Authors :
Bilel Derbel
Houda Derbel
FSEGS
Laboratoire d'Informatique Fondamentale de Lille (LIFL)
Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)
Parallel Cooperative Multi-criteria Optimization (DOLPHIN)
Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
GECCO, Genetic and Evolutionary Computation Conference (GECCO'12), Genetic and Evolutionary Computation Conference (GECCO'12), Sep 2012, Philadelphie, United States
Publication Year :
2012
Publisher :
ACM, 2012.

Abstract

We consider the neighborhood tree induced by alternating the use of different neighborhood structures within a local search descent. We investigate the issue of designing a search strategy operating at the neighborhood tree level by exploring different paths of the tree in a heuristic way. We show that allowing the search to 'backtrack' to a previously visited solution and resuming the iterative variable neighborhood descent by 'pruning' the already explored neighborhood branches leads to the design of effective and efficient search heuristics. We describe this idea by discussing its basic design components within a generic algorithmic scheme and we propose some simple and intuitive strategies to guide the search when traversing the neighborhood tree. We conduct a thorough experimental analysis of this approach by considering two different problem domains, namely, the Total Weighted Tardiness Problem (SMTWTP), and the more sophisticated Location Routing Problem (LRP). We show that independently of the considered domain, the approach is highly competitive. In particular, we show that using different branching and backtracking strategies when exploring the neighborhood tree allows us to achieve different trade-offs in terms of solution quality and computing cost.<br />Comment: Genetic and Evolutionary Computation Conference (GECCO'12) (2012)

Details

Database :
OpenAIRE
Journal :
Proceedings of the 14th annual conference on Genetic and evolutionary computation
Accession number :
edsair.doi.dedup.....e556a1c229e7be38d939555c62b134cb
Full Text :
https://doi.org/10.1145/2330163.2330338