Back to Search Start Over

Liouville Results and Asymptotics of Solutions of a Quasilinear Elliptic Equation with Supercritical Source Gradient Term

Authors :
Marie-Françoise Bidaut-Véron
Institut Denis Poisson (IDP)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO)
Source :
Advanced Nonlinear Studies, Advanced Nonlinear Studies, Walter de Gruyter GmbH, 2020, 21 (1), pp.57-76, degruyter.com
Publication Year :
2020
Publisher :
Walter de Gruyter GmbH, 2020.

Abstract

We consider the elliptic quasilinear equation - Δ m ⁢ u = u p ⁢ | ∇ ⁡ u | q {-\Delta_{m}u=u^{p}\lvert\nabla u\rvert^{q}} in ℝ N {\mathbb{R}^{N}} , q ≥ m {q\geq m} and p > 0 {p>0} , 1 < m < N {1 . Our main result is a Liouville-type property, namely, all the positive C 1 {C^{1}} solutions in ℝ N {\mathbb{R}^{N}} are constant. We also give their asymptotic behaviour; all the solutions in an exterior domain ℝ N ∖ B r 0 {\mathbb{R}^{N}\setminus B_{r_{0}}} are bounded. The solutions in B r 0 ∖ { 0 } {B_{r_{0}}\setminus\{0\}} can be extended as continuous functions in B r 0 {B_{r_{0}}} . The solutions in ℝ N ∖ { 0 } {\mathbb{R}^{N}\setminus\{0\}} has a finite limit l ≥ 0 {l\geq 0} as | x | → ∞ {\lvert x\rvert\to\infty} . Our main argument is a Bernstein estimate of the gradient of a power of the solution, combined with a precise Osserman-type estimate for the equation satisfied by the gradient.

Details

ISSN :
21690375 and 15361365
Volume :
21
Database :
OpenAIRE
Journal :
Advanced Nonlinear Studies
Accession number :
edsair.doi.dedup.....e55ae62ae5fffce4960254016ab7ddc1
Full Text :
https://doi.org/10.1515/ans-2020-2109