Back to Search
Start Over
Liouville Results and Asymptotics of Solutions of a Quasilinear Elliptic Equation with Supercritical Source Gradient Term
- Source :
- Advanced Nonlinear Studies, Advanced Nonlinear Studies, Walter de Gruyter GmbH, 2020, 21 (1), pp.57-76, degruyter.com
- Publication Year :
- 2020
- Publisher :
- Walter de Gruyter GmbH, 2020.
-
Abstract
- We consider the elliptic quasilinear equation - Δ m u = u p | ∇ u | q {-\Delta_{m}u=u^{p}\lvert\nabla u\rvert^{q}} in ℝ N {\mathbb{R}^{N}} , q ≥ m {q\geq m} and p > 0 {p>0} , 1 < m < N {1 . Our main result is a Liouville-type property, namely, all the positive C 1 {C^{1}} solutions in ℝ N {\mathbb{R}^{N}} are constant. We also give their asymptotic behaviour; all the solutions in an exterior domain ℝ N ∖ B r 0 {\mathbb{R}^{N}\setminus B_{r_{0}}} are bounded. The solutions in B r 0 ∖ { 0 } {B_{r_{0}}\setminus\{0\}} can be extended as continuous functions in B r 0 {B_{r_{0}}} . The solutions in ℝ N ∖ { 0 } {\mathbb{R}^{N}\setminus\{0\}} has a finite limit l ≥ 0 {l\geq 0} as | x | → ∞ {\lvert x\rvert\to\infty} . Our main argument is a Bernstein estimate of the gradient of a power of the solution, combined with a precise Osserman-type estimate for the equation satisfied by the gradient.
- Subjects :
- General Mathematics
010102 general mathematics
Statistical and Nonlinear Physics
Term (logic)
Type (model theory)
Keller-Osserman estimates
01 natural sciences
Domain (mathematical analysis)
Supercritical fluid
010101 applied mathematics
Elliptic curve
Mathematics - Analysis of PDEs
Bounded function
FOS: Mathematics
MSC 2010: 35J92
Liouville property
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Bernstein method
Limit (mathematics)
0101 mathematics
Constant (mathematics)
Analysis of PDEs (math.AP)
Mathematical physics
Mathematics
Subjects
Details
- ISSN :
- 21690375 and 15361365
- Volume :
- 21
- Database :
- OpenAIRE
- Journal :
- Advanced Nonlinear Studies
- Accession number :
- edsair.doi.dedup.....e55ae62ae5fffce4960254016ab7ddc1
- Full Text :
- https://doi.org/10.1515/ans-2020-2109