Back to Search Start Over

Evolution of Jahn–Teller distortion, transport and dielectric properties with doping in perovskite NdFe1−xMnxO3 (0 ≤ x ≤ 1) compounds

Authors :
H. L. Bhat
Suja Elizabeth
Tirthankar Chakraborty
Ruchika Yadav
Source :
Physical Chemistry Chemical Physics. 18:5316-5323
Publication Year :
2016
Publisher :
Royal Society of Chemistry (RSC), 2016.

Abstract

We have carried out dielectric and transport measurements in NdFe1-xMnxO3 (0 ≤ x ≤ 1) series of compounds and studied the variation of activation energy due to a change in Mn concentration. Despite similar ionic radii in Mn(3+) and Fe(3+), large variation is observed in the lattice parameters and a crossover from dynamic to static Jahn-Teller distortion is discernible. The Fe/Mn-O-Fe/Mn bond angle on the ab plane shows an anomalous change with doping. With an increase in the Mn content, the bond angle decreases until x = 0.6; beyond this, it starts rising until x = 0.8 and again falls after that. A similar trend is observed in activation energies estimated from both transport and dielectric relaxation by assuming a small polaron hopping (SPH) model. Impedance spectroscopy measurements delineate grain and grain boundary contributions separately both of which follow the SPH model. Frequency variation of the dielectric constant is in agreement with the modified Debye law from which relaxation dispersion is estimated.

Details

ISSN :
14639084 and 14639076
Volume :
18
Database :
OpenAIRE
Journal :
Physical Chemistry Chemical Physics
Accession number :
edsair.doi.dedup.....e58c52474a26b2fbe30f008e61bcd506