Back to Search Start Over

The extended permutohedron on a transitive binary relation

Authors :
Luigi Santocanale
Friedrich Wehrung
Laboratoire d'informatique Fondamentale de Marseille - UMR 6166 ( LIF )
Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique ( CNRS )
Laboratoire de Mathématiques Nicolas Oresme ( LMNO )
Université de Caen Normandie ( UNICAEN )
Normandie Université ( NU ) -Normandie Université ( NU ) -Centre National de la Recherche Scientifique ( CNRS )
Laboratoire d'informatique Fondamentale de Marseille - UMR 6166 (LIF)
Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques Nicolas Oresme (LMNO)
Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
Source :
European Journal of Combinatorics, European Journal of Combinatorics, Elsevier, 2014, 42, pp.179--206. 〈10.1016/j.ejc.2014.06.004〉, European Journal of Combinatorics, Elsevier, 2014, 42, pp.179--206. ⟨10.1016/j.ejc.2014.06.004⟩, European Journal of Combinatorics, 2014, 42, pp.179--206. ⟨10.1016/j.ejc.2014.06.004⟩
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

For a given transitive binary relation e on a set E, the transitive closures of open (i.e., co-transitive in e) sets, called the regular closed subsets, form an ortholattice Reg(e), the extended permutohedron on e. This construction, which contains the poset Clop(e) of all clopen sets, is a common generalization of known notions such as the generalized permutohedron on a partially ordered set on the one hand, and the bipartition lattice on a set on the other hand. We obtain a precise description of the completely join-irreducible (resp., completely meet-irreducible) elements of Reg(e) and the arrow relations between them. In particular, we prove that (1) Reg(e) is the Dedekind-MacNeille completion of the poset Clop(e); (2) Every open subset of e is a set-theoretic union of completely join-irreducible clopen subsets of e; (3) Clop(e) is a lattice iiff every regular closed subset of e is clopen, iff e contains no "square" configuration, iff Reg(e)=Clop(e); (4) If e is finite, then Reg(e) is pseudocomplemented iff it is semidistributive, iff it is a bounded homomorphic image of a free lattice, iff e is a disjoint sum of antisymmetric transitive relations and two-element full relations. We illustrate the strength of our results by proving that, for n greater than or equal to 3, the congruence lattice of the lattice Bip(n) of all bipartitions of an n-element set is obtained by adding a new top element to a Boolean lattice with n2^{n-1} atoms. We also determine the factors of the minimal subdirect decomposition of Bip(n).<br />25 pages

Details

Language :
English
ISSN :
01956698 and 10959971
Database :
OpenAIRE
Journal :
European Journal of Combinatorics, European Journal of Combinatorics, Elsevier, 2014, 42, pp.179--206. 〈10.1016/j.ejc.2014.06.004〉, European Journal of Combinatorics, Elsevier, 2014, 42, pp.179--206. ⟨10.1016/j.ejc.2014.06.004⟩, European Journal of Combinatorics, 2014, 42, pp.179--206. ⟨10.1016/j.ejc.2014.06.004⟩
Accession number :
edsair.doi.dedup.....e5bbdcd0bbe40ee48a4779ef92f8085e