Back to Search
Start Over
A novel deep learning based method for COVID-19 detection from CT image
- Source :
- Biomedical Signal Processing and Control
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- The novel Coronavirus named COVID-19 that World Health Organization (WHO) announced as a pandemic rapidly spread worldwide. Fast diagnosis of the virus infection is critical to prevent further spread of the virus, help identify the infected population, and cure the patients. Due to the increasing rate of infection and the limitations of the diagnosis kit, auxiliary detection tools are needed. Recent studies show that a deep learning model that comes up with the salient information of CT images can aid in the COVID-19 diagnosis. This study proposes a novel deep learning structure that the pooling layer of this model is a combination of pooling and the Squeeze Excitation Block (SE-block) layer. The proposed model uses Batch Normalization and Mish Function to optimize convergence time and performance of COVID-19 diagnosis. A dataset of two public hospitals was used to evaluate the proposed model. Moreover, it was compared to some different popular deep neural networks (DNN). The results expressed an accuracy of 99.03 with a recognition time of test mode of 0.069 ms in graphics processing unit (GPU). Furthermore, the best network results in classification metrics parameters and real-time applications belong to the proposed model.
- Subjects :
- Disease diagnosis
Computer science
business.industry
Deep learning
Pooling
Biomedical Engineering
Graphics processing unit
Normalization (image processing)
Health Informatics
Machine learning
computer.software_genre
Mish function
Article
Image (mathematics)
Signal Processing
Convergence (routing)
Batch normalization
Artificial intelligence
Layer (object-oriented design)
COVID-19 detection method
business
Deep learning model
computer
Block (data storage)
Subjects
Details
- ISSN :
- 17468094
- Volume :
- 70
- Database :
- OpenAIRE
- Journal :
- Biomedical Signal Processing and Control
- Accession number :
- edsair.doi.dedup.....e5e653bb71559fd6ce527a1e699f0fd7
- Full Text :
- https://doi.org/10.1016/j.bspc.2021.102987