Back to Search
Start Over
On-Farm Anaerobic Digestion of Dairy Manure Reduces the Abundance of Antibiotic Resistance-Associated Gene Targets and the Potential for Plasmid Transfer
- Source :
- Appl Environ Microbiol
- Publication Year :
- 2021
-
Abstract
- The present study investigated the impact of on-farm anaerobic digestion on the abundance of enteric bacteria, antibiotic resistance-associated gene targets, and the horizontal transfer potential of extended-spectrum β-lactamase (ESBL) genes. Samples of raw and digested manure were obtained from six commercial dairy farms in Ontario, Canada. Digestion significantly abated populations of viable coliforms in all six farms. Conjugative transfer of plasmids carrying β-lactamase genes from manure bacteria enriched overnight with buffered peptone containing 4 mg/liter cefotaxime into a β-lactam-sensitive green fluorescent protein (GFP)-labeled Escherichia coli recipient strain was evaluated in patch matings. Digestion significantly decreased the frequency of the horizontal transfer of ESBL genes. Twenty-five transconjugants were sequenced, revealing six distinct plasmids, ranging in size from 40 to 180 kb. A variety of ESBL genes were identified: bla(CTX-M-1), bla(CTX-M-14), bla(CTX-M-15), bla(CTX-M-27), bla(CTX-M-55), and bla(PER-1). bla(CTX-M-15) was the most prevalent ESBL gene detected on plasmids harbored by transconjugants. Various mobile genetic elements were found located proximal to resistance genes. Ten gene targets, including sul1, str(A), str(B), erm(B), erm(F), intI1, aadA, incW, bla(PSE), and bla(OXA-20), were quantified by quantitative PCR on a subset of 18 raw and 18 digested samples. Most targets were significantly more abundant in raw manure; however, erm(B) and erm(F) targets were more abundant in digested samples. Overall, on-farm digestion of dairy manure abated coliform bacteria, a number of antibiotic resistance-associated gene targets, and the potential for in vitro conjugation of plasmids conferring resistance to extended-spectrum β-lactams and other classes of antibiotics into E. coli CV601. IMPORTANCE Using livestock manure for fertilization can entrain antibiotic-resistant bacteria into soil. Manure on some dairy farms is anaerobically digested before being land applied. Recommending the widespread implementation of the practice should be founded on understanding the impact of this treatment on various endpoints of human health concern. Although lab-scale anaerobic treatments have shown potential for reducing the abundance of antibiotic resistance genes, there are very few data from commercial farms. Anaerobic digestion of manure on six dairy farms efficiently abated coliform bacteria, E. coli, and a majority of antibiotic resistance-associated gene targets. In addition, the conjugation potential of plasmids carrying ESBL genes into introduced E. coli strain CV601 was reduced. Overall, anaerobic digestion abated coliform bacteria, the genes that they carry, and the potential for ESBL-carrying plasmid transfer.
- Subjects :
- DNA, Bacterial
Cefotaxime
Farms
Gene Transfer, Horizontal
Genotype
medicine.disease_cause
Applied Microbiology and Biotechnology
Microbiology
03 medical and health sciences
Antibiotic resistance
Plasmid
medicine
Animals
Anaerobiosis
Escherichia coli
030304 developmental biology
2. Zero hunger
0303 health sciences
Ecology
biology
Bacteria
030306 microbiology
Public and Environmental Health Microbiology
Drug Resistance, Microbial
biochemical phenomena, metabolism, and nutrition
biology.organism_classification
bacterial infections and mycoses
Manure
Coliform bacteria
Anaerobic digestion
Phenotype
Genes, Bacterial
Cattle
Female
Food Science
Biotechnology
medicine.drug
Plasmids
Subjects
Details
- ISSN :
- 10985336
- Volume :
- 87
- Issue :
- 14
- Database :
- OpenAIRE
- Journal :
- Applied and environmental microbiology
- Accession number :
- edsair.doi.dedup.....e60cd2eff69d736b65c740e1e59744cf