Back to Search Start Over

Repurposing N-hydroxy thienopyrimidine-2,4-diones (HtPD) as inhibitors of human cytomegalovirus pUL89 endonuclease: Synthesis and biological characterization

Authors :
Tianyu He
Tiffany C. Edwards
Ryuichi Majima
Eunkyung Jung
Jayakanth Kankanala
Jiashu Xie
Robert J. Geraghty
Zhengqiang Wang
Source :
Bioorganic chemistry. 129
Publication Year :
2022

Abstract

The terminase complex of human cytomegalovirus (HCMV) is required for viral genome packaging and cleavage. Critical to the terminase functions is a metal-dependent endonuclease at the C-terminus of pUL89 (pUL89-C). We have previously reported metal-chelating N-hydroxy thienopyrimidine-2,4-diones (HtPD) as inhibitors of human immunodeficiency virus 1 (HIV-1) RNase H. In the current work, we have synthesized new analogs and resynthesized known analogs of two isomeric HtPD subtypes, anti-HtPD (13), and syn-HtPD (14), and characterized them as inhibitors of pUL89-C. Remarkably, the vast majority of analogs strongly inhibited pUL89-C in the biochemical endonuclease assay, with ICsub50/subvalues in the nM range. In the cell-based antiviral assay, a few analogs inhibited HCMV in low μM concentrations. Selected analogs were further characterized in a biophysical thermal shift assay (TSA) and in silico molecular docking, and the results support pUL89-C as the protein target of these inhibitors. Collectively, the biochemical, antiviral, biophysical, and in silico data reported herein indicate that the isomeric HtPD chemotypes 13-14 can serve as valuable chemical platforms for designing improved inhibitors of HCMV pUL89-C.

Details

ISSN :
10902120
Volume :
129
Database :
OpenAIRE
Journal :
Bioorganic chemistry
Accession number :
edsair.doi.dedup.....e634cb361f565f7b969b4b7d77d36675