Back to Search Start Over

Detecting depression using multimodal approach of emotion recognition

Authors :
Nhan Le Thanh
Chokri Ben Amar
Imen Tayari Meftah
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
Université de Sfax - University of Sfax
IEEE
Source :
International conference on complex systems 2012, International conference on complex systems 2012, Nov 2012, Agadir, Morocco. ⟨10.1109/ICoCS.2012.6458534⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; Depression is a growing problem in our society. It causes pain and suffering not only to patients but also to those who care about them. This paper presents a multimodal emotion recognition system that is capable of preventing depression. It consists of detecting persistent negative emotions for early detection of depression. Our proposal is based on an algebraic representation of emotional states using multidimensional vectors. This algebraic model provides powerful mathematical tools for the analysis and the processing of emotions and permits the fusion of complementary information such as facial expression, voice, physiological signals, etc. Experiments results show the efficiency of the proposed method in detecting negative emotions by giving high recognition rate.

Details

Language :
English
Database :
OpenAIRE
Journal :
International conference on complex systems 2012, International conference on complex systems 2012, Nov 2012, Agadir, Morocco. ⟨10.1109/ICoCS.2012.6458534⟩
Accession number :
edsair.doi.dedup.....e690e2694e91f51320f650091073fe38
Full Text :
https://doi.org/10.1109/ICoCS.2012.6458534⟩