Back to Search Start Over

Estimating tropical tree diversity indices from forestry surveys: A method to integrate taxonomic uncertainty

Authors :
Jean-François Molino
Christopher Baraloto
Bruno Hérault
Stéphane Guitet
Olivier Brunaux
Mélaine Aubry-Kientz
Daniel Sabatier
Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])
Office National des Forêts (ONF)
Ecologie des forêts de Guyane (ECOFOG)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université des Antilles et de la Guyane (UAG)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD [France-Sud])
Ecologie des forêts de Guyane (UMR ECOFOG)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Université de Guyane (UG)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)
Source :
Forest Ecology and Management, Forest Ecology and Management, Elsevier, 2014, 328, pp.270-281. ⟨10.1016/j.foreco.2014.05.045⟩
Publication Year :
2014

Abstract

Analyses of tree diversity and community composition in tropical rain forests are usually based either on general herbarium data or on a restricted number of botanical plots. Despite their high taxonomic accuracy, both types of data are difficult to extrapolate to landscape scales. Meanwhile, forestry surveys provide quantitative occurrence data on large areas, and are thus increasingly used for landscape-scale analyses of tree diversity. However, the reliability of these approaches has been challenged because of the ambiguity of the common (vernacular) names used by foresters and the complexity of tree taxonomy in those hyper-diverse communities. We developed and tested a novel approach to evaluate taxonomic reliability of forestry surveys and to propagate the resulting uncertainty in the estimates of several diversity indicators (alpha and beta entropy, Fisher-alpha and Sørensen similarity). Our approach is based on Monte-Carlo processes that simulate communities by taking into account the expected accuracy and reliability of common names. We tested this method in French Guiana, on 9 one-hectare plots (4279 trees – DBH ⩾ 10 cm) for which both common names and standardized taxonomic determinations were available. We then applied our method of community simulation on large forestry inventories (560 ha) at the landscape scale and compared the diversity indices obtained for 10 sites with those computed from precise botanical determination situated at the same localities. We found that taxonomic reliability of forestry inventories varied from 22% (species level) to 83% (family level) in this Amazonian region. Indices computed directly with raw forestry data resulted in incorrect values, except for Gini–Simpson beta-diversity. On the contrary, our correction method provides more accurate diversity estimates, highly correlated with botanical measurements, for almost all diversity indices at both regional and local scales. We obtained a robust ranking of sites consistent with those shown by botanical inventories. These results show that (i) forestry inventories represent a significant part of taxonomic information, (ii) the relative diversity of regional sites can be successfully ranked using forestry inventory data using our method and (iii) forestry inventories can valuably contribute to the detection of large-scale diversity patterns when biases are well-controlled and corrected. The tools we developed as R-functions are available in supplementary material and can be adapted with local parameters to be used for forest management and conservation issues in other regional contexts.

Details

Language :
English
ISSN :
03781127
Database :
OpenAIRE
Journal :
Forest Ecology and Management, Forest Ecology and Management, Elsevier, 2014, 328, pp.270-281. ⟨10.1016/j.foreco.2014.05.045⟩
Accession number :
edsair.doi.dedup.....e75bdf0f20f5bb7cfbfbf2bc2241f1f5
Full Text :
https://doi.org/10.1016/j.foreco.2014.05.045⟩