Back to Search Start Over

Advances in clustering and visualization of time series using GTM through time

Authors :
Ivan Olier
Alfredo Vellido
Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya. SOCO - Soft Computing
Source :
UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat. Dipósit de la Recerca de Catalunya, instname
Publication Year :
2006

Abstract

Most of the existing research on multivariate time series concerns supervised forecasting problems. In comparison, little research has been devoted to their exploration through unsupervised clustering and visualization. In this paper, the capabilities of Generative Topographic Mapping Through Time, a model with foundations in probability theory, that performs simultaneous time series clustering and visualization, are assessed in detail. Focus is placed on the visualization of the evolution of signal regimes and the exploration of sudden transitions, for which a novel identification index is defined. The interpretability of time series clustering results may become extremely difficult, even in exploratory visualization, for high dimensional datasets. Here, we define and test an unsupervised time series relevance determination method, fully integrated in the Generative Topographic Mapping Through Time model, that can be used as a basis for time series selection. This method should ease the interpretation of time series clustering results.

Details

ISSN :
08936080
Volume :
21
Issue :
7
Database :
OpenAIRE
Journal :
Neural networks : the official journal of the International Neural Network Society
Accession number :
edsair.doi.dedup.....e86627abb4378eb18fd2f8a568140cfd