Back to Search Start Over

Temperature-Controlled Rotational Epitaxy of Graphene

Authors :
Alpha T. N'Diaye
C. Brand
Giriraj Jnawali
Johann Coraux
Frank Meyer zu Heringdorf
Michael Horn-von Hoegen
Thomas Michely
Karim M. Omambac
Bene Poelsema
H. Hattab
Raoul van Gastel
Physics of Interfaces and Nanomaterials
Institut für Experimentelle Physik
Universität Duisburg-Essen [Essen]
Lawrence Berkeley National Laboratory [Berkeley] (LBNL)
Systèmes hybrides de basse dimensionnalité (HYBRID)
Institut Néel (NEEL)
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
MESA + Institute for Nanotechnology
University of Twente [Netherlands]
II. Physikalisches Institut [Köln]
Universität zu Köln
Source :
Nano letters, 19(7), 4594-4600. American Chemical Society, Nano letters, vol 19, iss 7, Nano Letters, Nano Letters, American Chemical Society, 2019, 19 (7), pp.4594-4600. ⟨10.1021/acs.nanolett.9b01565⟩
Publication Year :
2019

Abstract

When graphene is placed on a crystalline surface, the periodic structures within the layers superimpose and moire superlattices form. Small lattice rotations between the two materials in contact strongly modify the moire lattice parameter, upon which many electronic, vibrational, and chemical properties depend. While precise adjustment of the relative orientation in the degree- and sub-degree-range can be achieved via careful deterministic transfer of graphene, we report on the spontaneous reorientation of graphene on a metallic substrate, Ir(111). We find that selecting a substrate temperature between 1530 and 1000 K during the growth of graphene leads to distinct relative rotational angles of 0°, ± 0.6°, ±1.1°, and ±1.7°. When modeling the moire superlattices as two-dimensional coincidence networks, we can ascribe the observed rotations to favorable low-strain graphene structures. The dissimilar thermal expansion of the substrate and graphene is regarded as an effective compressive biaxial pressure that is more easily accommodated in graphene by small rotations rather than by compression.

Details

Language :
English
ISSN :
15306984 and 15306992
Database :
OpenAIRE
Journal :
Nano letters, 19(7), 4594-4600. American Chemical Society, Nano letters, vol 19, iss 7, Nano Letters, Nano Letters, American Chemical Society, 2019, 19 (7), pp.4594-4600. ⟨10.1021/acs.nanolett.9b01565⟩
Accession number :
edsair.doi.dedup.....e8e9ca7b843fb814d2094fd24a4a9bcb