Back to Search
Start Over
Estimating gene expression from DNA methylation and copy number variation: A deep learning regression model for multi-omics integration
- Source :
- Genomics. 112:2833-2841
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- Gene expression analysis plays a significant role for providing molecular insights in cancer. Various genetic and epigenetic factors (being dealt under multi-omics) affect gene expression giving rise to cancer phenotypes. A recent growth in understanding of multi-omics seems to provide a resource for integration in interdisciplinary biology since they altogether can draw the comprehensive picture of an organism's developmental and disease biology in cancers. Such large scale multi-omics data can be obtained from public consortium like The Cancer Genome Atlas (TCGA) and several other platforms. Integrating these multi-omics data from varied platforms is still challenging due to high noise and sensitivity of the platforms used. Currently, a robust integrative predictive model to estimate gene expression from these genetic and epigenetic data is lacking. In this study, we have developed a deep learning-based predictive model using Deep Denoising Auto-encoder (DDAE) and Multi-layer Perceptron (MLP) that can quantitatively capture how genetic and epigenetic alterations correlate with directionality of gene expression for liver hepatocellular carcinoma (LIHC). The DDAE used in the study has been trained to extract significant features from the input omics data to estimate the gene expression. These features have then been used for back-propagation learning by the multilayer perceptron for the task of regression and classification. We have benchmarked the proposed model against state-of-the-art regression models. Finally, the deep learning-based integration model has been evaluated for its disease classification capability, where an accuracy of 95.1% has been obtained.
- Subjects :
- Epigenomics
0106 biological sciences
Carcinoma, Hepatocellular
DNA Copy Number Variations
Computational biology
Biology
01 natural sciences
03 medical and health sciences
Deep Learning
Genetics
RNA-Seq
Epigenetics
Copy-number variation
030304 developmental biology
0303 health sciences
business.industry
Deep learning
Liver Neoplasms
Regression analysis
Genomics
DNA Methylation
Perceptron
Regression
Multilayer perceptron
DNA methylation
Linear Models
Artificial intelligence
Transcriptome
business
010606 plant biology & botany
Subjects
Details
- ISSN :
- 08887543
- Volume :
- 112
- Database :
- OpenAIRE
- Journal :
- Genomics
- Accession number :
- edsair.doi.dedup.....e910992dc6b8dcc008d99a2c26c2b257
- Full Text :
- https://doi.org/10.1016/j.ygeno.2020.03.021