Back to Search Start Over

Brownian motion between two random trajectories

Authors :
Lv, You
Publication Year :
2018

Abstract

Consider the first exit time of one-dimensional Brownian motion $\{B_s\}_{s\geq 0}$ from a random passageway. We discuss a Brownian motion with two time-dependent random boundaries in quenched sense. Let $\{W_s\}_{s\geq 0}$ be an other one-dimensional Brownian motion independent of $\{B_s\}_{s\geq 0}$ and let $\bfP(\cdot|W)$ represent the conditional probability depending on the realization of $\{W_s\}_{s\geq 0}$. We show that $$-t^{-1}\ln\bfP^x(\forall_{s\in[0,t]}a+\beta W_s\leq B_s\leq b+\beta W_s|W)$$ converges to a finite positive constant $\gamma(\beta)(b-a)^{-2}$ almost surely and in $L^p~ (p\geq 1)$ if $a<br />Comment: 20 pages

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....e927e5a03f06a055fc0de2ce295c2a5b