Back to Search Start Over

Experimental demonstration of continuous quantum error correction

Authors :
William P. Livingston
Machiel S. Blok
Emmanuel Flurin
Justin Dressel
Andrew N. Jordan
Irfan Siddiqi
Department of Physics [Berkeley]
University of California [Berkeley] (UC Berkeley)
University of California (UC)-University of California (UC)
Department of Physics and Astronomy [Rochester]
University of Rochester [USA]
Service de physique de l'état condensé (SPEC - UMR3680)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Quantronics Group (QUANTRONICS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Institute for Quantum Studies
Chapman University
Source :
Nature communications, vol 13, iss 1, Nature Commun., Nature Commun., 2022, 13, pp.2307. ⟨10.1038/s41467-022-29906-0⟩
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

The storage and processing of quantum information are susceptible to external noise, resulting in computational errors that are inherently continuous A powerful method to suppress these effects is to use quantum error correction. Typically, quantum error correction is executed in discrete rounds where errors are digitized and detected by projective multi-qubit parity measurements. These stabilizer measurements are traditionally realized with entangling gates and projective measurement on ancillary qubits to complete a round of error correction. However, their gate structure makes them vulnerable to errors occurring at specific times in the code and errors on the ancilla qubits. Here we use direct parity measurements to implement a continuous quantum bit-flip correction code in a resource-efficient manner, eliminating entangling gates, ancilla qubits, and their associated errors. The continuous measurements are monitored by an FPGA controller that actively corrects errors as they are detected. Using this method, we achieve an average bit-flip detection efficiency of up to 91%. Furthermore, we use the protocol to increase the relaxation time of the protected logical qubit by a factor of 2.7 over the relaxation times of the bare comprising qubits. Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture and demonstrate how continuous error correction codes can address challenges in realizing a fault-tolerant system.<br />Comment: 12 pages, 7 figures

Details

ISSN :
20411723
Volume :
13
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....e978011389d3f945959e0bf9e4efbdbd
Full Text :
https://doi.org/10.1038/s41467-022-29906-0