Back to Search Start Over

G-LINKS INVARIANTS, MARKOV TRACES AND THE SEMI-CYCLIC Uq𝔰𝔩(2)-MODULES

Authors :
Nathan Geer
Bertrand Patureau-Mirand
Laboratoire de Mathématiques de Bretagne Atlantique (LMBA)
Université de Brest (UBO)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Knot Theory and Its Ramifications, Journal of Knot Theory and Its Ramifications, World Scientific Publishing, 2013, pp.Vol. 22, No. 11 (2013). ⟨10.1142/S0218216513500636⟩
Publication Year :
2013
Publisher :
World Scientific Pub Co Pte Lt, 2013.

Abstract

Kashaev and Reshetikhin proposed a generalization of the Reshetikhin-Turaev link invariant construction to tangles with a flat connection in a principal G-bundle over the complement of the tangle. The purpose of this paper is to adapt and renormalize their construction to define invariants of G-links using the semi-cyclic representations of the non-restricted quantum group associated to sl2, defined by De Concini and Kac. Our construction uses a modified Markov trace. In our main example, the semi-cyclic invariants are a natural extension of the generalized Alexander polynomial invariants defined by Akutsu, Deguchi, and Ohtsuki. Surprisingly, direct computations suggest that these invariants are actually equal.<br />22 pages

Details

ISSN :
17936527 and 02182165
Volume :
22
Database :
OpenAIRE
Journal :
Journal of Knot Theory and Its Ramifications
Accession number :
edsair.doi.dedup.....e9a4d60d9ed7e44830c50a94d21398db
Full Text :
https://doi.org/10.1142/s0218216513500636