Back to Search Start Over

An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis

Authors :
Kenneth Keegstra
Ahmed Faik
Natasha V. Raikhel
Nicholas J. Price
Source :
Proceedings of the National Academy of Sciences. 99:7797-7802
Publication Year :
2002
Publisher :
Proceedings of the National Academy of Sciences, 2002.

Abstract

Microsomal membranes catalyze the formation of xyloglucan from UDP-Glc and UDP-Xyl by cooperative action of α-xylosyltransferase and β-glucan synthase activities. Here we report that etiolated pea microsomes contain an α-xylosyltransferase that catalyzes the transfer of xylose from UDP-[ 14 C]xylose onto β(1,4)-linked glucan chains. The solubilized enzyme had the capacity to transfer xylosyl residues onto cello-oligosaccharides having 5 or more glucose residues. Analysis of the data from these biochemical assays led to the identification of a group of Arabidopsis genes and the hypothesis that one or more members of this group may encode α-xylosyltransferases involved in xyloglucan biosynthesis. To evaluate this hypothesis, the candidate genes were expressed in Pichia pastoris and their activities measured with the biochemical assay described above. One of the candidate genes showed cello-oligosaccharide-dependent xylosyltransferase activity. Characterization of the radiolabeled products obtained with cellopentaose as acceptor indicated that the pea and the Arabidopsis enzymes transfer the 14 C-labeled xylose mainly to the second glucose residue from the nonreducing end. Enzymatic digestion of these radiolabeled products produced results that would be expected if the xylose was attached in an α(1,6)-linkage to the glucan chain. We conclude that this Arabidopsis gene encodes an α-xylosyltransferase activity involved in xyloglucan biosynthesis.

Details

ISSN :
10916490 and 00278424
Volume :
99
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....ea323d72b52d2f73e9dad33b2dad7589
Full Text :
https://doi.org/10.1073/pnas.102644799