Back to Search Start Over

Bridging Machine Learning and Mechanism Design towards Algorithmic Fairness

Authors :
Ana-Andreea Stoica
Roland Maio
Gourab K Patro
Manish Raghavan
Jessie Finocchiaro
Faidra Monachou
Stratis Tsirtsis
Source :
FAccT
Publication Year :
2021
Publisher :
ACM, 2021.

Abstract

Decision-making systems increasingly orchestrate our world: how to intervene on the algorithmic components to build fair and equitable systems is therefore a question of utmost importance; one that is substantially complicated by the context-dependent nature of fairness and discrimination. Modern decision-making systems that involve allocating resources or information to people (e.g., school choice, advertising) incorporate machine-learned predictions in their pipelines, raising concerns about potential strategic behavior or constrained allocation, concerns usually tackled in the context of mechanism design. Although both machine learning and mechanism design have developed frameworks for addressing issues of fairness and equity, in some complex decision-making systems, neither framework is individually sufficient. In this paper, we develop the position that building fair decision-making systems requires overcoming these limitations which, we argue, are inherent to each field. Our ultimate objective is to build an encompassing framework that cohesively bridges the individual frameworks of mechanism design and machine learning. We begin to lay the ground work towards this goal by comparing the perspective each discipline takes on fair decision-making, teasing out the lessons each field has taught and can teach the other, and highlighting application domains that require a strong collaboration between these disciplines.<br />Accepted at ACM FAccT 2021

Details

Database :
OpenAIRE
Journal :
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency
Accession number :
edsair.doi.dedup.....ea88bbd2d39b397896d5df64cc33501c
Full Text :
https://doi.org/10.1145/3442188.3445912