Back to Search Start Over

Utilizing multispectral lidar in the detection of declined trees

Authors :
Samuli Junttila
University of Helsinki, Faculty of Agriculture and Forestry, Department of Forest Sciences
Doctoral Programme in Sustainable Use of Renewable Natural Resources
Helsingin yliopisto, maatalous-metsätieteellinen tiedekunta
Uusiutuvien luonnonvarojen kestävän käytön tohtoriohjelma
Helsingfors universitet, agrikultur-forstvetenskapliga fakulteten
Doktorandprogrammet i hållbart utnyttjande av förnybara naturresurser
Kauranne, Tuomo
Holopainen, Markus
Vastaranta, Mikko
Source :
Aalto University

Abstract

The World’s forests are facing novel stress due to climate change. Pest insects and pathogens are shifting towards new latitudes and heat stress is resulting in increased tree mortality and more frequent forest fires globally. Uncertainty in estimating the magnitude of climate change induced forest and tree decline requires new methods for unbiased estimation of tree decline. The development of remote sensing methods to detect early tree decline has been a major challenge due to the subtle nature of the early changes caused by different stressors. Multispectral lidar technology has the potential of detecting early tree decline by providing accurate three-dimensional and spectral information of tree structure simultaneously. The main objective of this thesis was to investigate the capabilities of multispectral terrestrial lidar in the detection and assessment of tree decline caused by different stressors. This was done by investigating the estimation of a remotely detectable indicator of tree decline, leaf water content (LWC). Specifically, new methods for measuring LWC using multispectral lidar intensity were developed from the leaf to the canopy scale in various environments and the relationship between LWC and tree decline induced by various stressors was investigated. Furthermore, the developed methods were tested in a forest environment to assess the applicability of multispectral lidar in the detection of bark beetle infestation in the field. Studies I-III focused on investigating the relationship between LWC and lidar intensity at multiple wavelengths. First, a hyperspectral lidar instrument was used to detect significant changes between fresh and drought-treated Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L.) trees (study I). Then, a leaf-scale study (II) with Scots pine, Norway spruce, Small-leaved lime (Tilia cordata L.), Norway maple (Acer platanoides L.) and Silver birch (Betula pendula L.) was conducted and a strong relationship (R2=0.93) between a normalized difference index (NDI) calculated from 1550 nm and 690 nm wavelengths and LWC was found. This was followed by a study (III) where LWC estimation and pathogen- and drought-induced variation in LWC was studied with Norway spruce seedlings. Blue-stain fungi (Endoconidiophora polonica) inoculated seedlings expressed a rapid decrease in LWC while drought-treated seedlings showed more stable LWC until a very severe drought. LWC of the seedlings was predicted with an R2 of 0.89 using an NDI with 1550 nm and 905 nm wavelengths. In study IV, the developed method and the relationship between LWC and tree decline was investigated in the field with European spruce bark beetle (Ips typographus L.) infested trees. It was found that of the LWC metrics studied, gravimetric water content showed significant differences in the early stages of infestation and was more sensitive to bark beetle induced tree decline than equivalent water thickness (i.e. amount of water per leaf area). Linear discriminant models that were developed between infestation severity and lidar intensity metrics from 1550 nm and 905 nm wavelengths showed that green attack stage of the infestation could classified with an overall accuracy of 90%. This dissertation contributes both to the development of an objective and automatable method for detecting and measuring tree decline in the field, and to the understanding of the relationship between LWC and tree decline with implications to remote sensing. The dissertation will be published and popularized as a music video here: http://bit.ly/idanproffa. . Maailman metsät altistuvat uudenlaiselle stressille ilmastonmuutoksen myötä. Tuhohyönteiset sekä patogeenit siirtyvät uusille leveysasteille ja kuumuuden aiheuttama stressi lisääntyy, mikä johtaa lisääntyneeseen puiden kuolleisuuteen sekä kasvaneeseen metsäpalojen määrään maailmanlaajuisesti. On vaikeaa arvioida, kuinka voimakasta metsien heikentyminen ilmastonmuutoksen myötä on minkä vuoksi tarvitaan uusia harhattomia menetelmiä metsien kunnon arviointiin. Kaukokartoitusmenetelmillä voidaan mitata useita eri muuttujia metsistä, mutta stressin havaitseminen aikaisessa vaiheessa on ollut haastavaa muutoksien hienovaraisuudesta johtuen. Monikanavalaserkeilausteknologialla on potentiaalia havaita aikaisia puun heikentymisen merkkejä tarjoamalla tarkkaa kolmiulotteista tietoa sekä informaatiota puun heijastuvuudesta useilla eri aallonpituuksilla samanaikaisesti. Tämän väitöskirjan päätavoitteena oli tutkia monikanavalaserkeilauksen kykyä havaita ja arvioida useiden eri stressitekijöiden aiheuttamaa puun heikentymistä. Tämä tehtiin tutkimalla kaukokartoituksen avulla havaittavaa puiden heikentymisen indikaattoria, lehtien vesipitoisuutta. Väitöskirjassa kehitettiin uusia menetelmiä lehtien vesipitoisuuden arviointiin monikanavalaserkeilauksen avulla useilla eri mittakaavoilla yksittäisistä lehdistä kokonaisiin latvuksiin. Myös lehtien vesipitoisuuden ja erilaisten puun heikentymistä aiheuttavien stressitekijöiden välistä suhdetta tutkittiin, jotta stressin ja vesipitoisuuden välistä riippuvuutta voitaisiin ymmärtää paremmin. Osatutkimukset I-III keskittyivät tutkimaan lehtien vesipitoisuuden sekä laserintensiteetin, eli laserin heijastaman valon, välistä yhteyttä usealla aallonpituudella. Ensin, hyperspektrilaserkeilainta, joka havaitsee kahdeksaa eri aallonpituutta, käytettiin muutosten havaitsemiseen tuoreiden sekä kuivuuskäsiteltyjen mäntyjen sekä kuusten välillä (osatutkimus I). Sitten tehtiin tutkimus yksittäisillä lehdillä sekä neulasryhmillä (osatutkimus II) käyttäen mäntyä, kuusta, metsälehmusta, vaahteraa sekä rauduskoivua ja havaittiin vahva riippuvuus lehtien vesipitoisuuden sekä 1550 nm ja 690 nm aallonpituuksista lasketun indeksin välillä. Tämän jälkeen osatutkimuksessa III tutkittiin neulasten kosteuspitoisuuden arviointia monikanavalaserkeilauksen avulla sekä patogeenin ja kuivuuden aiheuttamaa lehtien vesipitoisuuden vaihtelua kuusen taimilla. Sinistäjäsienellä infektoitujen taimien neulasten vesipitoisuus vähentyi nopeasti, kun taas kuivuuskäsiteltyjen taimien vesipitoisuus pysyi tasaisempana erittäin voimakkaaseen kuivuuteen asti. Neulasten kosteuspitoisuus sekä heikentyneet taimet pystyttiin ennustamaan hyvällä tarkkuudella käyttäen indeksiä, joka oli laskettu 1550 nm ja 905 nm aallonpituuksista. Kehitettyä menetelmää sekä neulasten kosteuspitoisuuden ja puun heikentymisen välistä yhteyttä tutkittiin osatutkimuksessa IV kirjanpainajan (Ips typographus L.) heikentämässä metsässä. Monikanavalaserkeilauksen avulla pystyttiin erottamaan hyvällä tarkkuudella (90% yleistarkkuus) kirjanpainajan saastuttamat puut jo silloin kun latvus ei vielä osoittanut visuaalisia heikentymisen merkkejä. Laserintensiteetin avulla pystyttiin havainnoimaan pihkavuotoja rungossa, mikä auttoi terveiden puiden luokittelussa. Huomattiin myös, että neulasten kosteuspitoisuus laskee jo pian kirjanpainajan iskeytymisen jälkeen. Tämä väitöskirja edistää sekä objektiivisen ja automatisoitavan menetelmän kehitystä, jolla voidaan havaita ja mitata puiden heikentymistä, että lehtien vesipitoisuuden ja puiden heikentymisen välisen yhteyden ymmärtämistä. Väitöskirjan tuloksista julkaistaan myös populääri musiikki- ja videoteos nimellä: Idän Proffa feat. Linda Ilves – Keilaa puita. Video julkaistaan täällä: http://bit.ly/keilaapuita.

Details

Database :
OpenAIRE
Journal :
Aalto University
Accession number :
edsair.doi.dedup.....eaad86b46f6b87fb1740668ef465d4af