Back to Search Start Over

Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses

Authors :
Simon Bernèche
Thomas Boller
Daniel Wipf
Sefer Baday
Sally Koegel
Delphine Mieulet
Andres Wiemken
Odile Chatagnier
Emmanuel Guiderdoni
Pierre-Emmanuel Courty
Moritz F. Lehmann
University of Basel (Unibas)
Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Biozentrum [Basel, Suisse]
Instanbul Technical University
Partenaires INRAE
Agroécologie [Dijon]
Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
Source :
Mycorrhiza, Mycorrhiza, Springer Verlag, 2017, 27 (7), pp.695-708. ⟨10.1007/s00572-017-0786-8⟩
Publication Year :
2017

Abstract

In the arbuscular mycorrhizal (AM) symbiosis, plants satisfy part of their nitrogen (N) requirement through the AM pathway. In sorghum, the ammonium transporters (AMT) AMT3;1, and to a lesser extent AMT4, are induced in cells containing developing arbuscules. Here, we have characterized orthologs of AMT3;1 and AMT4 in four other grasses in addition to sorghum. AMT3;1 and AMT4 orthologous genes are induced in AM roots, suggesting that in the common ancestor of these five plant species, both AMT3;1 and AMT4 were already present and upregulated upon AM colonization. An artificial microRNA approach was successfully used to downregulate either AMT3;1 or AMT4 in rice. Mycorrhizal root colonization and hyphal length density of knockdown plants were not affected at that time, indicating that the manipulation did not modify the establishment of the AM symbiosis and the interaction between both partners. However, expression of the fungal phosphate transporter FmPT was significantly reduced in knockdown plants, indicating a reduction of the nutrient fluxes from the AM fungus to the plant. The AMT3;1 knockdown plants (but not the AMT4 knockdown plants) were significantly less stimulated in growth by AM fungal colonization, and uptake of both 15N and 33P from the AM fungal network was reduced. This confirms that N and phosphorus nutrition through the mycorrhizal pathway are closely linked. But most importantly, it indicates that AMT3;1 is the prime plant transporter involved in the mycorrhizal ammonium transfer and that its function during uptake of N cannot be performed by AMT4.

Details

Language :
English
ISSN :
09406360 and 14321890
Database :
OpenAIRE
Journal :
Mycorrhiza, Mycorrhiza, Springer Verlag, 2017, 27 (7), pp.695-708. ⟨10.1007/s00572-017-0786-8⟩
Accession number :
edsair.doi.dedup.....eacd090bea08415dc0ffac4c021559fd
Full Text :
https://doi.org/10.1007/s00572-017-0786-8⟩