Back to Search Start Over

Ground reducibility is EXPTIME-complete

Authors :
Hubert Comon
Florent Jacquemard
Laboratoire Spécification et Vérification [Cachan] (LSV)
École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
Verification in databases (DAHU)
École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Constraints, automatic deduction and software properties proofs (PROTHEO)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
INRIA
Jacquemard, Florent
Source :
LICS, Information and Computation, Information and Computation, 2003, 187 (1), pp.123-153, [Research Report] RR-3800, INRIA. 1999, pp.26, Information and Computation, Elsevier, 2003, 187 (1), pp.123-153
Publication Year :
2003
Publisher :
Elsevier BV, 2003.

Abstract

We prove that ground reducibility is EXPTIME-complete in the general case. EXPTIME-hardness is proved by encoding the computations of an alternating Turing machine whose space is polynomially bounded. It is more difficult to show that ground reducibility belongs to DEXPTIME. We associate first an automaton with disequality constraints A/sub R,t/ to a rewrite system R and a term t. This automaton is deterministic and accepts a term u if and only if t is not ground reducible by R. The number of states of A/sub R,t/ is O(2/sup /spl par/R/spl par//spl times//spl par/t/spl par//) and the size of the constraints are polynomial in the size of R,t. Then we prove some new pumping lemmas, using a total ordering on the computations of the automaton. Thanks to these lemmas, we can give an upper bound to the number of distinct subtrees of a minimal successful computation of an automaton with disequality constraints. It follows that emptiness of such an automaton can be decided in time polynomial in the number of its states and exponential in the size of its constraints. Altogether, we get a simply exponential deterministic algorithm for ground reducibility.

Details

ISSN :
08905401 and 10902651
Volume :
187
Database :
OpenAIRE
Journal :
Information and Computation
Accession number :
edsair.doi.dedup.....eace98698f1c9370a9548fe8de20809a
Full Text :
https://doi.org/10.1016/s0890-5401(03)00134-2