Back to Search Start Over

Biostimulation of Vigna unguiculata subsp. sesquipedalis—Cultivar Sesquipedalis (Yardlong Bean)—by Brevibacillus sp. B65 in Organoponic Conditions

Authors :
Teresa Orberá Ratón
Ann Cuypers
Iraida Bayard Vedey
Source :
Current Microbiology. 78:1882-1891
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

In the current research, the effects of fluid inoculum of Brevibacillus sp. B65, a plant growth promoting microorganism (PGPM), on growth of V. unguiculata subsp. sesquipedalis cultivated in organoponic conditions were evaluated in comparison with traditional inorganic and organic fertilizers. Plant growth promotion of Yardlong bean was assessed through the effects of four different treatments on plant growth and development traits, as well as on crop yield. The four treatments were NPK-inorganic fertilizer (T1), organic matter alone (T2), fluid inoculum of B65 alone (T3) and inoculum supplemented with organic matter (T4). The inoculum of B65 supplemented with organic matter improved different traits of plant growth and development such as seed germination, root development, plant and leaves growth, flowering, as well as crop yield. The main impact of the inoculation mixture was on seed emergence. In the present research, it was demonstrated that biostimulation of Vigna unguiculata subsp. sesquipedalis through inoculation of PGPM Brevibacillus sp. B65 supplemented with organic matter, may replace traditional organic and inorganic fertilization strategies. The nature of the positive influence of strain B65 on the legume is not well understood yet; however, it could be attributed to bacterial phytostimulation through auxin and ethylene production, as well as P mobilization. Additionally, organic matter supplementation demonstrated a stimulating effect on B65 traits. This is of utmost importance and will have a main impact on the sustainable development of agronomical practices.

Details

ISSN :
14320991 and 03438651
Volume :
78
Database :
OpenAIRE
Journal :
Current Microbiology
Accession number :
edsair.doi.dedup.....eaeaf998de40eeb087500152588c31fa