Back to Search
Start Over
Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe modulaire
- Source :
- Geom. Topol. 20, no. 1 (2016), 491-535, Geometry and Topology, Geometry and Topology, 2016, 20 (1), pp.491-535. ⟨10.2140/gt.2016.20.491⟩, Geometry and Topology, Mathematical Sciences Publishers, 2016, 20 (1), pp.491-535. ⟨10.2140/gt.2016.20.491⟩
- Publication Year :
- 2016
- Publisher :
- Mathematical Sciences Publishers, 2016.
-
Abstract
- The mapping class group $\Gamma$ of the complement of a Cantor set in the plane arises naturally in dynamics. We show that the ray graph, which is the analog of the complex of curves for this surface of infinite type, has infinite diameter and is hyperbolic. We use the action of $\Gamma$ on this graph to find an explicit non trivial quasimorphism on $\Gamma$ and to show that this group has infinite dimensional second bounded cohomology. Finally we give an example of a hyperbolic element of $\Gamma$ with vanishing stable commutator length. This carries out a program proposed by Danny Calegari.<br />Comment: In french, 44 pages, 26 figures
- Subjects :
- 37E30
Astrophysics::High Energy Astrophysical Phenomena
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
Gromov-hyperbolic space
Dimension (graph theory)
mapping class groups
01 natural sciences
[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]
57M60
Combinatorics
Mathematics - Geometric Topology
[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]
0103 physical sciences
[MATH]Mathematics [math]
20F65
Mathematics - Dynamical Systems
0101 mathematics
ComputingMilieux_MISCELLANEOUS
Mathematics
Group (mathematics)
010102 general mathematics
surface homeomorphisms
Cantor sets
Surface (topology)
Mapping class group
Cohomology
Cantor set
quasimorphisms
Bounded function
010307 mathematical physics
Geometry and Topology
Mathematics - Group Theory
Subjects
Details
- ISSN :
- 13640380 and 14653060
- Volume :
- 20
- Database :
- OpenAIRE
- Journal :
- Geometry & Topology
- Accession number :
- edsair.doi.dedup.....eb5fc0f3edf059cb4cb8c31c3b6d85d6
- Full Text :
- https://doi.org/10.2140/gt.2016.20.491