Back to Search Start Over

The memorization of in-line sensorimotor invariants: toward behavioral ontogeny and enactive agents

Authors :
Kristen Manac'H
Pierre Chevaillier
Pierre De Loor
Lab-STICC_ENIB_CID_IHSEV
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC)
École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM)
Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM)
Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Artificial Life and Robotics, Artificial Life and Robotics, Springer Verlag, 2014, 19 (2), pp.127-135. ⟨10.1007/s10015-014-0143-3⟩
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

International audience; This paper presents a behavioral ontogeny for artificial agents based on the interactive memorization of sensorimotor invariants. The agents are controlled by continuous timed recurrent neural networks (CTRNNs) which bind their sensors and motors within a dynamic system. The behavioral ontogenesis is based on a phylo- genetic approach: memorization occurs during the agent's lifetime and an evolutionary algorithm discovers CTRNN parameters. This shows that sensorimotor invariants can be durably modified through interaction with a guiding agent. After this phase has finished, agents are able to adopt new sensorimotor invariants relative to the environment with no further guidance. We obtained these kinds of behaviors for CTRNNs with 3-6 units, and this paper examines the functioning of those CTRNNs. For instance, they are able to internally simulate guidance when it is externally absent, in line with theories of simulation in neuroscience and the enactive field of cognitive science.

Details

ISSN :
16147456 and 14335298
Volume :
19
Database :
OpenAIRE
Journal :
Artificial Life and Robotics
Accession number :
edsair.doi.dedup.....ebb05b62ef80659d0bdaf7aa8255830f
Full Text :
https://doi.org/10.1007/s10015-014-0143-3