Back to Search Start Over

Network Analysis for Species Management in Rivers Networks: Application to the Loire River

Authors :
Nicolas Alcala
Jean Secondi
Séverine Vuilleumier
Audrey Chaput-Bardy
Groupe ECologie et COnservation des vertébrés (GECCO)
Université d'Angers (UA)-Biodiversité et gestion des territoires EA 7316
La Maison du Lac de Grand-Lieu
Department of Ecology and Evolution, Laboratory for Conservation Biology
Université de Lausanne (UNIL)
Stanford University [Stanford]
Université d'Angers (UA)
Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA)
Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)
School of Life Sciences [Lausanne]
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Stanford University
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS)
Source :
Biological Conservation, Biological Conservation, Elsevier, 2017, 210, pp.26-36. ⟨10.1016/j.biocon.2017.04.003⟩
Publication Year :
2017

Abstract

International audience; Forecasting the colonization process is important for wildlife managers who supervise the reintroduction of endangered species or control the spread of invasive species. Patch connectivity is thus critical to predicting the fates of expanding populations. Connectivity in river networks results from river dendritic structure and dispersal modality of organisms. Both factors may strongly affect the colonization process and the efficiency of conservation action plans. Based on empirical data, we simulated, using a simplified model with limited number of parameters, the colonization of a large river network, the Loire River, by the native Eurasian beaver and the invasive African clawed frog. For each species, we inferred model parameters (dispersal behavior and distances) by comparing the simulated and the observed distributions. Using network theory, we evaluated the efficiency of alternative conservation strategies to prevent or promote colonization of the river network. Network robustness to fragmentation and disturbance was also assessed. The model accurately predicted > 70% of the observed species ranges. Conservation strategies that selectively protect habitat patches with the highest connectivity values provide a weak advantage at preventing connectivity loss compared to random protection strategies. In contrast, the targeted destruction of highly connected patches had a much stronger effect on the fragmentation of the network than the random removal of habitat patches. Spatial network topology strongly contributes to determining colonization patterns of large river watersheds. Network theory allows tests for robustness of rivers to fragmentation and disturbance, and identification of strategies for conservation planning.

Details

ISSN :
00063207
Volume :
210
Database :
OpenAIRE
Journal :
Biological Conservation
Accession number :
edsair.doi.dedup.....ebfb1ed8e7ce4d4002d7b3ab0ee58a99
Full Text :
https://doi.org/10.1016/j.biocon.2017.04.003⟩