Back to Search Start Over

Pre-collapse motion of the February 2021 Chamoli rock–ice avalanche, Indian Himalaya

Authors :
Mylène Jacquemart
David Shean
Andreas Kääb
Maximillian S. van Wyk de Vries
Dan H. Shugar
Simon Gascoin
César Deschamps-Berger
Etienne Berthier
Shashank Bhushan
Centre d'études spatiales de la biosphère (CESBIO)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Source :
Natural Hazards and Earth System Sciences, 22 (10), Natural Hazards and Earth System Sciences, Natural Hazards and Earth System Sciences, 2022, 22, pp.3309-3327. ⟨10.5194/nhess-22-3309-2022⟩, Natural Hazards and Earth System Sciences Discussions
Publication Year :
2022
Publisher :
Copernicus GmbH, 2022.

Abstract

Landslides are a major geohazard that cause thousands of fatalities every year. Despite their importance, identifying unstable slopes and forecasting collapses remains a major challenge. In this study, we use the 7 February 2021 Chamoli rock–ice avalanche as a data-rich example to investigate the potential of remotely sensed datasets for the assessment of slope stability. We investigate imagery over the 3 decades preceding collapse and assess the precursory signs exhibited by this slope prior to the catastrophic collapse. We evaluate monthly slope motion from 2015 to 2021 through feature tracking of high-resolution optical satellite imagery. We then combine these data with a time series of pre- and post-event digital elevation models (DEMs), which we use to evaluate elevation change over the same area. Both datasets show that the 26.9×106 m3 collapse block moved over 10 m horizontally and vertically in the 5 years preceding collapse, with particularly rapid motion occurring in the summers of 2017 and 2018. We propose that the collapse results from a combination of snow loading in a deep headwall crack and permafrost degradation in the heavily jointed bedrock. Despite observing a clear precursory signal, we find that the timing of the Chamoli rock–ice avalanche could likely not have been forecast from satellite data alone. Our results highlight the potential of remotely sensed imagery for assessing landslide hazard in remote areas, but that challenges remain for operational hazard monitoring.<br />Natural Hazards and Earth System Sciences, 22 (10)<br />ISSN:1561-8633<br />ISSN:1684-9981

Details

ISSN :
16849981 and 15618633
Volume :
22
Database :
OpenAIRE
Journal :
Natural Hazards and Earth System Sciences
Accession number :
edsair.doi.dedup.....ec0b18dcd3e5c98a2a898b94289a37e4
Full Text :
https://doi.org/10.5194/nhess-22-3309-2022