Back to Search Start Over

Thermodynamic Cyclic Voltammograms Based on Ab Initio Calculations: Ag(111) in Halide-Containing Solutions

Authors :
Nicolas G. Hörmann
Karsten Reuter
Source :
Journal of Chemical Theory and Computation
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Cyclic voltammograms (CVs) are a central experimental tool for assessing the structure and activity of electrochemical interfaces. Based on a mean-field ansatz for the interface energetics under applied potential conditions, we here derive an ab initio thermodynamics approach to efficiently simulate thermodynamic CVs. All unknown parameters are determined from density functional theory (DFT) calculations coupled to an implicit solvent model. For the showcased CVs of Ag(111) electrodes in halide-anion-containing solutions, these simulations demonstrate the relevance of double-layer contributions to explain experimentally observed differences in peak shapes over the halide series. Only the appropriate account of interfacial charging allows us to capture the differences in equilibrium coverage and total electronic surface charge that cause the varying peak shapes. As a case in point, this analysis demonstrates that prominent features in CVs do not only derive from changes in adsorbate structure or coverage but can also be related to variations of the electrosorption valency. Such double-layer effects are proportional to adsorbate-induced changes in the work function and/or interfacial capacitance. They are thus especially pronounced for electronegative halides and other adsorbates that affect these interface properties. In addition, the analysis allows us to draw conclusions on how the possible inaccuracy of implicit solvation models can indirectly affect the accuracy of other predicted quantities such as CVs.

Details

ISSN :
15499626 and 15499618
Volume :
17
Database :
OpenAIRE
Journal :
Journal of Chemical Theory and Computation
Accession number :
edsair.doi.dedup.....ec18f5322b165f700ef6d04faedf0083
Full Text :
https://doi.org/10.1021/acs.jctc.0c01166