Back to Search Start Over

Time-optimal excitation of Maximum Quantum coherence: Physical Limits and pulse sequences

Authors :
Y. Zhang
Stefano Caldarelli
Haidong Yuan
Simone Swantje Köcher
G. N. M. Reddy
T. Heydenreich
Steffen J. Glaser
Department of Chemistry
Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM)
Institute of Energy and Climate Research - Fundamental Electrochemistry ( IEK-9)
Forschungszentrum Jülich GmbH | Centre de recherche de Juliers
Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association
Institut des Sciences Moléculaires de Marseille (ISM2)
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)
Institut de Chimie des Substances Naturelles (ICSN)
Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
Department of Mechanical and Automation Engineering (CAD Laboratory)
The Chinese University of Hong Kong [Hong Kong]
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
The journal of chemical physics 144(16), 164103-(2016). doi:10.1063/1.4945781, Journal of Chemical Physics, Journal of Chemical Physics, American Institute of Physics, 2016, 144 (16), pp.164103. ⟨10.1063/1.4945781⟩, Journal of Chemical Physics, 2016, 144 (16), pp.164103. ⟨10.1063/1.4945781⟩
Publication Year :
2016
Publisher :
American Institute of Physics, 2016.

Abstract

International audience; Here we study the optimum efficiency of the excitation of maximum quantum (MaxQ) coherence using analytical and numerical methods based on optimal control theory. The theoretical limit of the achievable MaxQ amplitude and the minimum time to achieve this limit are explored for a set of model systems consisting of up to five coupled spins. In addition to arbitrary pulse shapes, two simple pulse sequence families of practical interest are considered in the optimizations. Compared to conventional approaches, substantial gains were found both in terms of the achieved MaxQ amplitude and in pulse sequence durations. For a model system, theoretically predicted gains of a factor of three compared to the conventional pulse sequence were experimentally demonstrated. Motivated by the numerical results, also two novel analytical transfer schemes were found: Compared to conventional approaches based on non-selective pulses and delays, double-quantum coherence in two-spin systems can be created twice as fast using isotropic mixing and hard spin-selective pulses. Also it is proved that in a chain of three weakly coupled spins with the same coupling constants, triple-quantum coherence can be created in a time-optimal fashion using so-called geodesic pulses.

Details

Language :
English
ISSN :
00219606 and 10897690
Database :
OpenAIRE
Journal :
The journal of chemical physics 144(16), 164103-(2016). doi:10.1063/1.4945781, Journal of Chemical Physics, Journal of Chemical Physics, American Institute of Physics, 2016, 144 (16), pp.164103. ⟨10.1063/1.4945781⟩, Journal of Chemical Physics, 2016, 144 (16), pp.164103. ⟨10.1063/1.4945781⟩
Accession number :
edsair.doi.dedup.....ec4c6dc21ab417716069f0dcb2387fa7