Back to Search Start Over

ENOblock, a unique small molecule inhibitor of the non-glycolyticfunctions of enolase, alleviates the symptoms of type 2 diabetes

Authors :
Youngkeun Ahn
Wan Seok Kang
Yong-Chul Kim
JungIn Um
Da-Woon Jung
Woong-Hee Kim
Hyung-Ho Ha
Darren R. Williams
Ji-Hyung Lee
So Hun Kim
Haaglim Cho
Source :
SCIENTIFIC REPORTS(7), Scientific Reports
Publication Year :
2017

Abstract

Type 2 diabetes mellitus (T2DM) significantly impacts on human health and patient numbers are predicted to rise. Discovering novel drugs and targets for treating T2DM is a research priority. In this study, we investigated targeting of the glycolysis enzyme, enolase, using the small molecule ENOblock, which binds enolase and modulates its non-glycolytic ‘moonlighting’ functions. In insulin-responsive cells ENOblock induced enolase nuclear translocation, where this enzyme acts as a transcriptional repressor. In a mammalian model of T2DM, ENOblock treatment reduced hyperglycemia and hyperlipidemia. Liver and kidney tissue of ENOblock-treated mice showed down-regulation of known enolase target genes and reduced enolase enzyme activity. Indicators of secondary diabetic complications, such as tissue apoptosis, inflammatory markers and fibrosis were inhibited by ENOblock treatment. Compared to the well-characterized anti-diabetes drug, rosiglitazone, ENOblock produced greater beneficial effects on lipid homeostasis, fibrosis, inflammatory markers, nephrotoxicity and cardiac hypertrophy. ENOblock treatment was associated with the down-regulation of phosphoenolpyruvate carboxykinase and sterol regulatory element-binding protein-1, which are known to produce anti-diabetic effects. In summary, these findings indicate that ENOblock has potential for therapeutic development to treat T2DM. Previously considered as a ‘boring’ housekeeping gene, these results also implicate enolase as a novel drug target for T2DM.

Details

Language :
English
Database :
OpenAIRE
Journal :
SCIENTIFIC REPORTS(7), Scientific Reports
Accession number :
edsair.doi.dedup.....ec5ae49b6d450cd01007fe71b6ead835