Back to Search Start Over

Thermo-Tunable Pores and Antibiotic Gating Properties of Bovine Skin Gelatin Gels Prepared with Poly(n-isopropylacrylamide) Network

Authors :
Chien-Hsing Lu
Jem-Kun Chen
Fang-Chang Tsai
Chih-Feng Huang
Chi-Jung Chang
Source :
Polymers, Volume 12, Issue 9, Polymers, Vol 12, Iss 2156, p 2156 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Polystyrene nanospheres (PNs) were embedded in bovine skin gelatin gels with a poly(N-isopropylacrylamide) (PNIPAAm) network, which were denoted as NGHHs, to generate thermoresponsive behavior. When 265 nm PNs were exploited to generate the pores, bovine skin gelatin extended to completely occupy the pores left by PNs below the lower critical solution temperature (LCST), forming a pore-less structure. Contrarily, above the LCST, the collapse of hydrogen bonding between bovine skin gelatin and PNIPAAm occurred, resulting in pores in the NGHH. The behavior of pore closing and opening below and above the LCST, respectively, indicates the excellent drug gating efficiency. Amoxicillin (AMX) was loaded into the NGHHs as smart antibiotic gating due to the pore closing and opening behavior. Accordingly, E. coli. and S. aureus were exploited to test the bacteria inhibition ratio (BIR) of the AMX-loaded NGHHs. BIRs of NGHH without pores were 48% to 46.7% at 25 and 37 &deg<br />C, respectively, for E. coli during 12 h of incubation time. The BIRs of nanoporous NGHH could be enhanced from 61.5% to 90.4% providing a smart antibiotic gate of bovine skin gelatin gels against inflammation from infection or injury inflammation.

Details

ISSN :
20734360
Volume :
12
Database :
OpenAIRE
Journal :
Polymers
Accession number :
edsair.doi.dedup.....ec69c1afc3c4ad2d90d016d9758edc6d