Back to Search
Start Over
Sensitivity analysis of an asymmetric Monte Carlo beam model of a Siemens PRIMUS accelerator
- Source :
- Journal of Applied Clinical Medical Physics
- Publication Year :
- 2012
- Publisher :
- John Wiley and Sons Inc., 2012.
-
Abstract
- 72 1024x768 Normal 0 false false false The assumption of cylindrical symmetry in radiotherapy accelerator models can pose a challenge for precise Monte Carlo modeling. This assumption makes it difficult to account for measured asymmetries in clinical dose distributions. We have performed a sensitivity study examining the effect of varying symmetric and asymmetric beam and geometric parameters of a Monte Carlo model for a Siemens PRIMUS accelerator. The accelerator and dose output were simulated using modified versions of BEAMnrc and DOSXYZnrc that allow lateral offsets of accelerator components and lateral and angular offsets for the incident electron beam. Dose distributions were studied for 40 × 40 cm2 fields. The resulting dose distributions were analyzed for changes in flatness, symmetry, and off-axis ratio (OAR). The electron beam parameters having the greatest effect on the resulting dose distributions were found to be electron energy and angle of incidence, as high as 5% for a 0.25° deflection. Electron spot size and lateral offset of the electron beam were found to have a smaller impact. Variations in photon target thickness were found to have a small effect. Small lateral offsets of the flattening filter caused significant variation to the OAR. In general, the greatest sensitivity to accelerator parameters could be observed for higher energies and off-axis ratios closer to the central axis. Lateral and angular offsets of beam and accelerator components have strong effects on dose distributions, and should be included in any high-accuracy beam model.
- Subjects :
- Photon
Flatness (systems theory)
Monte Carlo method
Physics::Medical Physics
Electrons
Electron
Sensitivity and Specificity
030218 nuclear medicine & medical imaging
03 medical and health sciences
0302 clinical medicine
Optics
Radiation Oncology Physics
Humans
Radiology, Nuclear Medicine and imaging
Instrumentation
Monte Carlo
Physics
Radiation
Radiotherapy
business.industry
Radiotherapy Planning, Computer-Assisted
beam asymmetry
Models, Theoretical
Deflection (physics)
Angle of incidence (optics)
030220 oncology & carcinogenesis
Cathode ray
Physics::Accelerator Physics
Particle Accelerators
business
Monte Carlo Method
Beam (structure)
accelerator modeling
Subjects
Details
- Language :
- English
- ISSN :
- 15269914
- Volume :
- 13
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Journal of Applied Clinical Medical Physics
- Accession number :
- edsair.doi.dedup.....ecdc6ef7925e997511ec0a183f2fbb91